THE MANGA GUIDE TO

SHIN TAKAHASHI TREND-PRO, CO., LTD.

PRAISE FOR THE MANGA GUIDE SERIES

"A fun and fairly painless lesson on what many consider to be a less-than-thrilling subject." -SCHOOL LIBRARY JOURNAL
"This is really what a good math text should be like. . . . It presents statistics as something fun, and something enlightening."
—GOOD MATH, BAD MATH
"If you want to introduce a subject that kids wouldn't normally be very interested in, give it an amusing storyline and wrap it in cartoons."
-make
"Definitely way better than trying to comprehend a bland statistics book." -Dr. Dobb's COdetalk
"The most enjoyable tech book l've ever read."
—LINUX PRO MAGAZINE
"This is a solid book, and I wish there were more like it in the IT world."
-SLASHDOT
"Especially if you have a genuine enthusiasm for the material, the Manga Guides are effective learning tools." -SkepticBlog
"The art is fantastic, and the teaching method is both fun and educational."
-ACTIVE ANIME
"Great for anyone wanting an introduction or a refresher on statistics."
-PARENTING SQUAD
"A light, impressively non-oppressive read, especially considering the technical nature of its subject."
-AIN'T IT COOL NEWS
"Makes accessible a very intimidating subject, letting the reader have fun while still delivering the goods."
-GEEKDAD, WIRED.COM
"An awfully fun, highly educational read."
-FrazzledDad

THE MANGA GUIDE TO STATISTICS

THE MANGA GUIDE" TO STATISTICS

SHIN TAKAHASHI
TREND-PRO CO, LTD.

THE MANGA GUIDE TO STATISTICS. Copyright © 2009 by Shin Takahashi and TREND-PRO Co., Ltd.
The Manga Guide to Statistics is a translation of the Japanese original, Manga de Wakaru Tokeigaku, published by Ohmsha, Ltd. of Tokyo, Japan, © 2004 by Shin Takahashi and TREND-PRO Co., Ltd.

This English edition is co-published by No Starch Press and Ohmsha, Ltd.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher.
$111009 \quad 23456789$
ISBN-10: 1-59327-189-1
ISBN-13: 978-1-59327-189-3
Publisher: William Pollock
Author: Shin Takahashi
Illustrator: Iroha Inoue
Scenario Writer: re_akino
Producer: TREND-PRO Co., Ltd.
Production Editor: Megan Dunchak
Developmental Editor: Tyler Ortman
Technical Reviewers: Tom Bowler and Whitney Ortman
Compositor: Riley Hoffman
Proofreader: Christine Lias
Indexer: Karin Arrigioni
For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com/
Library of Congress Cataloging-in-Publication Data
Takahashi, Shin.
The manga guide to statistics / Shin Takahashi and Trend-pro Co. -- 1st ed.
p. cm.

Includes index.
ISBN-13: 978-1-59327-189-3
ISBN-10: 1-59327-189-1

1. Mathematical statistics--Comic books, strips, etc. 2. Mathematical statistics--Caricatures and cartoons.
I. Trend-pro Co. II. Title.

QA276.T228 2009
519.5--dc22

2008042157
No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

All characters in this publication are fictitious, and any resemblance to real persons, living or dead, is purely coincidental.

TABLE OF CONTENTS

PREFACE vii
OUR PROLOGUE:
STATISTICS WITH • HEART-POUNDING EXCITEMENT • 1
1
DETERMINING DATA TYPES 13

1. Categorical Data and Numerical Data 14
2. An Example of Tricky Categorical Data 20
3. How Multiple-Choice Answers Are Handled in Practice 28
Exercise and Answer 29
Summary 29
2
GETTING THE BIG PICTURE: UNDERSTANDING NUMERICAL DATA 31
4. Frequency Distribution Tables and Histograms 32
5. Mean (Average) 40
6. Median 44
7. Standard Deviation. 48
8. The Range of Class of a Frequency Table 54
9. Estimation Theory and Descriptive Statistics 57
Exercise and Answer 57
Summary 58
3
GETTING THE BIG PICTURE: UNDERSTANDING CATEGORICAL DATA 59
10. Cross Tabulations 60
Exercise and Answer 64
Summary 64
4
STANDARD SCORE AND DEVIATION SCORE 65
11. Normalization and Standard Score 66
12. Characteristics of Standard Score 73
13. Deviation Score 74
14. Interpretation of Deviation Score 76
Exercise and Answer 78
Summary 80
5
LET'S OBTAIN THE PROBABILITY 81
15. Probability Density Function 82
16. Normal Distribution 86
17. Standard Normal Distribution 89
Example I 95
Example II 97
18. Chi-Square Distribution 99
19. t Distribution 106
20. F Distribution 106
21. Distributions and Excel 107
Exercise and Answer. 108
Summary 109
6
LET'S LOOK AT THE RELATIONSHIP BETWEEN TWO VARIABLES 111
22. Correlation Coefficient 116
23. Correlation Ratio 121
24. Cramer's Coefficient 127
Exercise and Answer. 138
Summary 142
7
LET'S EXPLORE THE HYPOTHESIS TESTS 143
25. Hypothesis Tests 144
26. The Chi-Square Test of Independence 151
Explanation 152
Exercise 157
Thinking It Over 158
Answer 160
27. Null Hypotheses and Alternative Hypotheses 170
28. P-value and Procedure for Hypothesis Tests 175
29. Tests of Independence and Tests of Homogeneity 184
Example 184
Procedure 185
30. Hypothesis Test Conclusions 187
Exercise and Answer. 188
Summary 189
APPENDIX
LET'S CALCULATE USING EXCEL 191
31. Making a Frequency Table 192
32. Calculating Arithmetic Mean, Median, and Standard Deviation 195
33. Making a Cross Tabulation 197
34. Calculating the Standard Score and the Deviation Score 199
35. Calculating the Probability of the Standard Normal Distribution 204
36. Calculating the Point on the Horizontal Axis of the Chi-Square Distribution 205
37. Calculating the Correlation Coefficient 206
38. Performing Tests of Independence 208
INDEX 213

PREFACE

This is an introductory book on statistics. The intended readers are:

- Those who need to conduct data analysis for research or business
- Those who do not necessarily need to conduct data analysis now but are interested in getting an idea of what the world of statistics is like
- Those who have already acquired general knowledge of statistics and want to learn more

Statistics is one of the areas of mathematics most closely related to everyday life and business. Familiarizing yourself with statistics may come in handy in situations like:

- Estimating how many servings of fried noodles you can sell at a food stand you are planning to set up during a school festival
- Estimating whether you will be able to pass a certification exam
- Comparing the probability that a sick person will get better between a case in which medicine X is used and a case in which it is not used

This book consists of seven chapters. Basically, each chapter is organized in the following sections:

- Cartoon
- Text explanation to supplement the cartoon
- Exercise and answer
- Summary

You can learn a lot by just reading the cartoon section, but deeper understanding and knowledge will be acquired if you read the other sections as well.

I would be very pleased if you start feeling that statistics is fun and useful after reading this book.

I would like to thank the staff in the development department of Ohmsha, Ltd., who offered me the opportunity to write this book. I would also like to thank TREND-PRO, Co., Ltd. for making my manuscript into a cartoon, the scenario writer, re_akino, and the illustrator, Iroha Inoue. Last but not least, I would like to thank Dr. Sakaori Fumitake of the College of Social Relations at Rikkyo University. He provided me with invaluable advice while I was preparing the manuscript for this book.

SHIN TAKAHASHI
／期． C． 1. U．

U． C． ㄴ․
 II．I．．．．． © ॥． U． U． H．．．．． M． C U． ॥．． O．．． M． M．М． M． BI． O C． U． I．． O．I．．．．． CICUTI ॐ U．．．．．． S． M． M．．．．．．． O．． CB O \because. M． Cl ． O．．．．．． M． C． O． U． M．．．．．． O．． … … C．I．． C ॐ U． M． I．I．． C．
 O C． ॥．॥．．．． I． M． U． U M．

OUR PROLOGUE： STATISTICS WITH

 －HEART－POUNDING EXCITEMENT • U，
 Q
C． Cl ． Cl

U－
C．
I．
C．

CY L

（1）
M
若 ，

U．．．．．．
I．
I
C．
Q

M，
S．

（
M，
M
IM
Q，
Q

S．
况

U
U．

R
C．．．．．．．．．

1／
Q
IS I S I I
（a）．

 I

4 OUR PROLOGUE

I'VE NEVER BEEN CONTACTED BY THE CHOMA/ TIMES ABOUT THE CABINET.

HMMMM. NEITHER OF YOU WERE SURVEYED, BUT THE CABINET APPROVAL RATING IS IN THE PAPER.

THAT'S WEIRD. YOU TWO BOTH HAVE THE RIGHT TO VOTE, DON'T YOU?

THAT'S MY POINT. THAT'S WHERE

RUI, DO YOU KNOW HOW MANY VOTERS THERE ARE IN

BUT THAT IS TECHNICALLY IMPOSSIBLE. WHAT AM I GOING TO DO?

10 OUR PROLOGUE

12 OUR PROLOGUE
 C．
 UI． M M．．．．．．．．． M． I．I．I．．．．．
 I． ॐ ॥ M．． I．．．．．． I．I．．．．．．．． M． M I． МЧ 气． ॥． M．
 （1）． M． ॠ．．．．． M． II．．． I．．．．．．． I．I．I．． ）． ॥ 气． ॥．（．） OICIC． M．．．． M． C ： ॐ． O． ॥．．．气． ॐ M． M．．．．．．． М．II．．．．．． M．．．．． ॥．．．．．．．． ॥．．．．．．． ॥．．．．．． II．． I．．．．． M．． M． M． UIU M \because ， M．．．．．．． I．I．．．．．．． ． I．．．． （．） ॥．М．．． M．
 ॥ ． M I．．М．

DETERMINING DATA TYPES

 1

1. CATEGORICAL DATA AND NUMERICAL DATA
 WHAT MUST I LEARN FIRST?

Melon High School Story Vol. 5 Reader Questionnaire

Q1. What is your impression of
Melon High School Story Vol. 5?

1. Very fun
2. Rather fun
3. Average
4. Rather boring
5. Very boring

Q2. Sex

1. Female
 2. Male

Q3. Age

Q4. How many comics do you purchase per month?

titles

A Rina keychain will be given away to 30 lucky winners among those who send back this questionnaire!

AHA, FOUND IT!

16 CHAPTER 1

QUESTIONNAIRE RESULTS				
RESPONDENT	Q1 YOUR IMPRESSION OF MELON HIGH SCHOOL STORY	$\begin{aligned} & \text { Q2 } \\ & \text { SEX } \end{aligned}$	$\begin{aligned} & \text { Q3 } \\ & A G E \end{aligned}$	Q4 COMIC BOOK PURCHASES PER MONTH
RUI	VERY FUN	FEMALE	17	2
A	RATHER FUN	FEMALE	17	1
B	AVERAGE	male	18	5
c	RATHER BORING	MALE	22	7
D	RATHER FUN	FEMALE	25	4
E	VERY BORING	MALE	20	3
F	VERY FUN	FEmALE	16	1
G	RATHER FUN	FEMALE	17	2
H	AVERAGE	male	18	0
I	Average	FEMALE	21	3
..."

DATA THAT CANNOT BE MEASURED IS CALLED CATEGORICAL DATA, AND DATA THAT CAN BE MEASURED IS CALLED NUMERICAL DATA.*

* CATEGORICAL DATA IS ALSO SOMETIMES CALLED QUALITATIVE, AND NUMERICAL DATA IS SOMETIMES CALLED QUANTITATIVE.

HMM

2. AN EXAMPLE OF TRICKY CATEGORICAL DATA

THE FIRST QUESTION DOES
NOT LOOK LIKE
CATEGORICAL
DATA...
is your imprt Melon High School Sto
(1.) Very fun
2. Rather fun

Average
Rather boring
Very boring

I UNDERSTAND WHY YOU FEEL THAT WAY.

STEP TEST GRADES
ARE IMMEASURABLE DATA. IN OTHER WORDS, THEY ARE CATEGORICAL DATA.

I SEE!

NOW, YOU SHOULD BE ABLE TO ANSWER THIS QUESTION.

Q1. What is your impression o
 Melon High School Story Vol. 5?
 1.) Very fun 2. Rather fun
 3. Average
 4. Rather boring
 5. Very boring

Melon High School Story Vol. 5 Reader Questionnaire

Q2. Sex
(1.) Female
2. Male

Q3. Age
Q4. How many comics do you
purchase per month?

17 2 \qquad _ titles

DO THE ANSWERS TO Q1 HAVE EQUAL INTERVALS?

26 CHAPTER 1

3. HOW MULTIPLE-CHOICE ANSWERS ARE HANDLED IN PRACTICE

As mentioned on page 25, the multiple-choice answers for the first question of the readers' questionnaire are categorical data. However, in practice, it is possible to handle such data as numerical data when processing consumer questionnaires and so on. Some examples are below.

Very fun	\Rightarrow	5 points
Rather fun	\Rightarrow	4 points
Average	\Rightarrow	3 points
Rather boring	\Rightarrow	2 points
Very boring	\Rightarrow	1 point

Very fun	\Rightarrow	2 points
Rather fun	\Rightarrow	1 point
Average	\Rightarrow	0 points
Rather boring	\Rightarrow	-1 points
Very boring	\Rightarrow	-2 points

The same data is handled differently in theory and in practice. Keep in mind that data may be categorized differently in different situations.

EXERCISE

Determine whether the data in the following table is categorical data or numerical data.

Respondent	Blood type	Opinion on sports drink \boldsymbol{X}	Comfortable air conditioning temperature (${ }^{\circ} \mathrm{C}$)	100m track race record (seconds)
Mr./Ms. A	B	Not good	25	14.1
Mr./Ms. B	A	Good	24	12.2
Mr./Ms. C	AB	Good	25	17.0
Mr./Ms. D	0	Average	27	15.6
Mr./Ms. E	A	Not good	24	18.4
\ldots	\ldots	\ldots	\ldots	\ldots

ANSWER

Blood type and opinion on sports drink X are examples of categorical data. Comfortable air conditioning temperature and 100 m track race record are examples of numerical data.

- Data is classified as categorical data or numerical data.
- Some data, such as "very fun" or "very boring," is theoretically categorical data. However, in practice, it is possible to treat it as numerical data.
／期． C． 1. U．
 U． C． ㄴ․
 II．．．．．． U ॥． U． U． H．．．．． M． C U． \because ॥ O．．． M． M．М． M． CI． Ø．．．．．． U．\because. U． I．． （I）． CICUTI ॐ U．．．．．． C． M． U．．． O．． U． O M． M． Cl ． O．．．．．． M． C． O． U． M．．．．．． O．． … … C．I．． C ॐ U． M． I．I．． C．
 \because C． ॥．॥．．．． I． M． C． U M．

M I．． ॥． M．．．．．． M．I．．． ）． U． M． M．M． M．U．I．．I．品． M． Мル．М． Ø．ஊ． M．．．．．．．．．．．．． I．I． M．II．I．I． M．I．戠将 M．М．．．．．．． М． M． M．．．．．．．．．． M．U．U． I．I． М．将 M．М． M此． M．\．．．．．i． I．．．．．
U \because U ॥．．．．．． M．U．U． M．М． M．М．转．I．． M М．此 M．I．．．．．．．．． M U I．．．．．．．．．． M．I．．．．．．荘． ॐ． M．．．．．．．． M． （．）．． M．．．．． Y．\．U．．I． M．． M． M（．
 M．【． ॥．．．．．．．．． I．．．．．．．．．．． M． ॐ

> THERE IS A HUGE SHOPPING MALL CONSISTING OF 50 RAMEN SHOPS...AND ONLY RAMEN SHOPS.

WHAT?! I'LL KNOCK YOU OVER, YOU PINHEAD!

RESULTS OF BOWLING TOURNAMENT

TEAM A		TEAM B		TEAM C	
PLAYER	SCORE	PLAYER	SCORE	PLAYER	SCORE
RUI-RUI	86	KIMIKO	84	SHINOBU	229
JUN	73	MEGUMI	71	YUKA	77
YUMI	124	YOSHIMI	103	SAKURA	59
SHIZUKA	111	MEI	85	KANAKO	95
TOUKO	90	KAORI	90	KUMIKO	70
KAEDE	38	YUKIKO	89	HIRONO	88

 DIVIDING THE SUM OF THE SCORES BY THE NUMBER OF TEAM MEMBERS, SO...

TEAM A

$$
\frac{86+73+124+111+90+38}{6}=\frac{522}{6}=87
$$

TEAM B

$$
\frac{84+71+103+85+90+89}{6}=\frac{522}{6}=87
$$

TEAM C

$$
\frac{229+77+59+95+70+88}{6}=\frac{618}{6}=103
$$

IN CASES LIKE THIS,
I AGREE. THE AVERAGE IS ABOVE 100...BUT 5 PEOPLE SCORED BELOW 100.

TEAM A

38	73	86	90	111	124

TEAM B

71	84	85	89	90	103

TEAM C

59	70	77	88	95	229

NUMBER OF VALUES = ODD

NUMBER OF VALUES = EVEN

IF THE NUMBER OF VALUES
IF THE NUMBER OF VALUES IS ODD, THE SCORE THAT IS IN THE MIDDLE IS THE MEDIAN.

THEY SURE ARE. TEAM A'S SCORES VARY FROM LOW TO HIGH, BUT TEAM B'S SCORES ARE MORE

THE MINIMUM STANDARD DEVIATION IS ZERO, AND AS THE "SCATTERING OF DATA" INCREASES, SO DOES THE STANDARD

STANDARD DEVIATION

$$
\operatorname{TEAM} A=27.5 \quad \text { TEAM } B=9.5
$$

MEMBERS OF TEAM B HAD SCORES SIMILAR TO EACH OTHER. THUS THE STANDARD DEVIATION IS SMALLER THAN TEAM A'S.

I TOLD YOU THAT THE FORMULA FOR STANDARD DEVIATION IS:

THERE'S ALSO A DIFFERENT FORMULA, WHICH IS:

5. THE RANGE OF CLASS OF A FREQUENCY TABLE

If you felt that something was unclear in "Frequency Distribution Tables and Histograms" on page 32, take another look here at the table introduced on page 38.

TABLE 2-1: 50 BEST RAMEN SHOPS FREQUENCY TABLE

Class (equal or greater/less than)	Class midpoint	Frequency	Relative frequency
$500-600$	550	4	0.08
$600-700$	650	13	0.26
$700-800$	750	18	0.36
$800-900$	850	12	0.24
$900-1000$	950	3	0.06
Sum		50	1.00

As you can see, the range of class in this table is 100 . The range was not determined according to any kind of mathematical standard-l set the range subjectively. Determining the range of class is up to the person who is analyzing the data.

But shouldn't there be a way to set the range of class mathematically? A frequency table may seem invalid if its range is determined subjectively.

There is a way to figure out the range of class mathematically. This is explained on the following pages. You'll also find a sample calculation using the data in Table 2-1.

Step 1

Calculate the number of classes using the Sturges' Rule below:

$$
\begin{aligned}
& 1+\frac{\log _{10} \text { (number of values) }}{\log _{10} 2} \\
& 1+\frac{\log _{10} 50}{\log _{10} 2}=1+5.6438 \ldots=6.6438 \ldots \approx 7
\end{aligned}
$$

Step 2

Calculate the range of class using the formula below:
(the maximum value) - (the minimum value)
the number of classes calculated from the Sturges' Rule

$$
\frac{980-500}{7}=\frac{480}{7}=68.5714 \ldots \approx 69
$$

Below is a frequency chart organized according to the range of class as calculated by the formula in step 2.

TABLE 2-2: 50 BEST RAMEN SHOPS FREQUENCY TABLE (RANGE OF CLASS DETERMINED MATHEMATICALLY)

Class (equal or greater/less than)	Class midpoint	Frequency	Relative frequency
$500-569$	534.5	2	0.04
$569-638$	603.5	5	0.10
$638-707$	672.5	15	0.30
$707-776$	741.5	6	0.12
$776-845$	810.5	10	0.20
$845-914$	879.5	10	0.20
$914-983$	948.5	2	0.04
Sum		50	1.00

What do you think of this? Does this table seem even less convincing compared to Table 2-1? And why is the interval 69 yen?

If you try to explain to people that "this was calculated by a formula called the Sturges' Rule," they will only get mad and say, "Who cares about Stur . . . whatever! Why did you set the interval to a weird amount like 69 yen?"

To summarize, some people may hesitate to set the range of class subjectively. However, as the table above indicates, determining the range of class with the Sturges' Rule does not necessarily provide a convincing table. A frequency table is, after all, a tool to help you visualize data. The analyst should set the range of class to any amount he or she thinks is appropriate.

6. ESTIMATION THEORY AND DESCRIPTIVE STATISTICS

In the prologue, we explain that statistics can make an estimate about the situation of the population based on information collected from samples. To tell the truth, this explanation is not necessarily correct.

Statistics can be roughly classified into two categories: estimation theory and descriptive statistics. The one introduced in the prologue is the former. What, then, is descriptive statistics? It is a kind of a statistics that aims to describe the status of a group simply and clearly by organizing data. Descriptive statistics regards the group as the population.

Perhaps this explanation of descriptive statistics is abstract and difficult to understand. Here is an example to help clarify things. Remember when I figured out the mean and standard deviation of Rui's bowling team? This was not because I was trying to estimate the status of a population from the information collected from Rui's team. I calculated the mean and standard deviation purely because I wanted to describe the status of Rui's team simply. That kind of statistics is descriptive statistics.

EXERCISE AND ANSWER

EXERCISE

The table below is a record of a high school girls' 100 m track race.

Runner	100 m track race (seconds)
Ms. A	16.3
Ms. B	22.4
Ms. C	18.5
Ms. D	18.7
Ms. E	20.1

1. What is the average?
2. What is the median?
3. What is the standard deviation?

ANSWER

1. The arithmetic mean is $\frac{16.3+22.4+18.5+18.7+20.1}{5}=\frac{96}{5}=19.2$
2. The median is 18.7 lllllll $\begin{array}{llllll} & 16.3 & 18.5 & 18.7 & 20.1 & 22.4\end{array}$
3. The standard deviation is

$$
\begin{aligned}
& \sqrt{\frac{(16.3-19.2)^{2}+(22.4-19.2)^{2}+(18.5-19.2)^{2}+(18.7-19.2)^{2}+(20.1-19.2)^{2}}{5}} \\
& =\sqrt{\frac{(-2.9)^{2}+3.2^{2}+(-0.7)^{2}+(-0.5)^{2}+0.9^{2}}{5}} \\
& =\sqrt{\frac{8.41+10.24+0.49+0.25+0.81}{5}} \\
& =\sqrt{\frac{20.2}{5}} \\
& =\sqrt{4.04} \\
& \approx 2.01
\end{aligned}
$$

SUMMARY

- To visualize the big picture of the data intuitively, create a frequency table or draw a histogram.
- When making a frequency table, the range of class may be determined by the Sturges' Rule.
- To visualize the data mathematically, calculate the arithmetic mean, median, and standard deviation.
- When there is an extremely large or small value in the data set, it is more appropriate to use the median than the arithmetic mean.
- Standard deviation is an index to describe "the size of scattering" of the data.
／

 U． U，准．

U． C． ㄴ․
 ㄴ․․․․․․․ U ॥． U． U． H．．．．． O． C U．
 O．．． M． M．М． （．）．． CI． ॠ．．．．．．． U．\because. U．射． （I）． CICUTI ॐ U．．．．．． M．．． M． U．．． O．． I．．．．．． O \because M． Cl ． O．．．．．． M． C． O． ॥．．．．．．． M．．．．．． O．． … … C．I．． C ॐ U． M． I．I．． C．
 \because C． ॥．॥．．．． I． M． C． U M．

GETTING THE BIG PICTURE： UNDERSTANDING CATEGORICAL DATA

 Q，L
 I
P

．

U．

（a）
CY L

M，
P／
C

U苃

U．． 1
U．
I
若
Q
药

Q，

S．

U．
，
I．
苜
C． Cl ．

R
C．
S．
况

（ 1
次
I

II I I I I I
P－
C．．．．．．．．．
U．

1／
Q
IS I S I I
苗

而

THE GRAPH SHOWS THAT MORE THAN HALF OF THE STUDENTS ANSWERED THAT THEY "LIKE" IT. I GUESS THE DESIGN OF THIS UNIFORM WAS

FAIRLY WELL RECEIVED.

EXERCISE AND ANSWER

EXERCISE

A newspaper took a survey on political party A , which hopes to win the next election.
The results are below.

Respondent	Do you expect party A to win or lose against party B?
1	Lose
2	Lose
3	Lose
4	I don't know
5	Win
6	Lose
7	Win
8	I don't know
9	Lose
10	Lose

Make a cross tabulation from these survey results.

ANSWER

Below is the cross tabulation.

Response	Frequency	$\%$
Win	2	20
I don't know	2	20
Lose	6	60
Sum	10	100

- One way to see the big picture of all the data is to make a cross tabulation.
／期．
 U． C． U． C． ……．．．． M． ㄴ․․․․․․․ \because ヱ ॥． M． U． M． M． C U．
 O．．． M． M．．．．． （．）．． CI． Ø．．．．．． U．\because. U． I．． O．．．．．． CICUTI ॐ $\because \because \because$ \because M． M．．．．．．． O．． U． O M． M． Cl ． O．．．．．． M．I．I． ㄱ．．．．．． O． ॥．．．．．．． M．．．．．． O．． … … U． M． ॐ U．
 O．．．．．． M．IU．I． M． M．．．．．．．．． C． ॥．З．．．． I． M． C． \because

STANDARD SCORE AND DEVIATION SCORE

誛 ॥． M．．．．．． M．I．．． ）． U． M． I． M．I． M． M． M．М М． Ø．ஊ． M．I． М М． M．II．．．．．． M．I．I．．戠将 М． М． M．衰．I．．．． M．U．U． M． M．． M
 M．． M．I．I．将 I．．．．． U \because U ॥．．．．．． M． M I．．．． ॥．．．．．．． M．誛此 U． \because. I．．．．．．．． Y．．． M．\＃． ॐ． M．．．．．．．． M． （．）．． M．．．．． Y．\．U．．．誛
 M（．
 M．【． M．S． I．．．．．．．．．．． M． МЩ．（．．．．

1. NORMALIZATION AND STANDARD SCORE

* ADJUSTING TEST RESULTS BASED ON STANDARD SCORE IS COMMONLY KNOWN AS GRADING ON A CURVE. NNN

EVEN THOUGH THE DIFFERENCES BETWEEN OUR SCORES AND THE AVERAGES WERE THE SAME!			HMMM...		
STUDENT	HISTORY	BIOLOGY	STUDENT	HISTORY	BIOLOGY
RUI	73	59	H	7	50
Yumi	61	73	1	53	41
A	14	47	J	100	62
B	41	38	k	57	44
C	49	63	L	45	26
D	87	56	M	56	91
E	69	15	N	34	35
F	65	53	0	37	53
G	36	80	P	70	68
			AVERAGE	53	53

70 CHAPTER 4

* STANDARD SCORE IS ALSO CALLED Z-SCORE.

2. CHARACTERISTICS OF STANDARD SCORE

THERE ARE CERTAIN CHARACTERISTICS OF STANDARD SCORES THAT ARE FIGURED OUT BY STANDARDIZATION.

3. DEVIATION SCORE

4. INTERPRETATION OF DEVIATION SCORE

Special caution is necessary when interpreting deviation scores. As explained on page 74, the definition of deviation score is:

$$
\text { deviation score }=\text { standard score } \times 10+50=\frac{(\text { each value }- \text { mean) }}{\text { standard deviation }} \times 10+50
$$

As mentioned on page 62, Rui's class has a total of 40 students, and as mentioned on page 40, there are 18 girls in the class. The example of deviation score on page 69 is not for the whole class, but is for the girls only. If the story were about the whole class, the mean and standard deviation would have been different from those for the girls only. Naturally, the deviation scores for Rui and Yumi would have been different as well. In fact, when everybody in the class is taken into consideration, Rui has the higher deviation score. Table 4-1 shows the test results for the whole class. Try calculating the deviation score.

To tell you the answer in advance, the deviation score for Rui's history test is 59.1, and that of Yumi's biology test is 56.7 .

Suppose the same test is given to students in classes 1 and 2. The mean and standard deviation of class 1 are calculated individually, and deviation scores are obtained according to those amounts. Similarly, mean, standard deviation, and deviation scores for class 2 are obtained. Student A in class 1 has a deviation score of 57 . Student B in class 2 has the same deviation score of 57 . Outwardly, students A and B seem to have the same ability. However, the mean and standard deviation used to calculate these two deviation scores differ, because they come from two different classes. Unless the mean and standard deviation of the two classes are equal, you cannot compare the deviation scores of the two students.

Here is another example. Suppose student A takes an entrance exam at a prep school in April and gets a deviation score of 54. After studying hard at a special summer course, student A takes an entrance exam at a different prep school in September. The deviation score is 62. It may seem that student A's proficiency has increased. However, the exam and the students taking it in April are different from the exam and the students taking it in September. Therefore, you cannot compare the deviation scores for these two exams, because the data used to calculate the mean and standard deviation of the April and September exams is different. In exam situations, you can only compare deviation scores for a group of students who all take the same exam. Keep these facts in mind when you interpret deviation scores.

TABLE 4-1: TEST RESULTS OF HISTORY AND BIOLOGY (ALL MEMBERS OF RUI'S CLASS)

Girls	History	Biology	Boys	History	Biology
Rui	73	59	a	54	2
Yumi	61	73	b	93	7
A	14	47	c	91	98
B	41	38	d	37	85
C	49	63	e	44	100
D	87	56	f	16	29
E	69	15	g	12	57
F	65	53	h	44	37
G	36	80	i	4	95
H	7	50	j	17	39
I	53	41	k	66	70
J	100	62	l	53	14
K	57	44	m	14	97
L	45	26	n	73	39
M	56	91	0	6	75
N	34	35	p	22	80
O	37	53	q	69	77
P	70	68	r	95	14
			s	16	24
			t	37	91
			u	14	36
				88	76

Average of the whole class	48.0	54.9
Standard deviation of the whole class	27.5	26.9

EXERCISE AND ANSWER

EXERCISE

Below are the results of a high school girls' 100 m track race.

Runner	100 m track race (seconds)
Ms. A	16.3
Ms. B	22.4
Ms. C	18.5
Ms. D	18.7
Ms. E	20.1
Mean	19.2
Standard deviation	2.01

1. Demonstrate that the mean of the standard scores of the 100 m track race is 0 .
2. Demonstrate that the standard deviation of the standard score of the 100 m track race is 1 .

ANSWER

1. Mean of the standard score of the 100 m track race

$$
\begin{aligned}
& =\frac{\left(\frac{16.3-19.2}{2.01}\right)+\left(\frac{22.4-19.2}{2.01}\right)+\left(\frac{18.5-19.2}{2.01}\right)+\left(\frac{18.7-19.2}{2.01}\right)+\left(\frac{20.1-19.2}{2.01}\right)}{5} \\
& =\frac{\left\{\frac{(16.3-19.2)+(22.4-19.2)+(18.5-19.2)+(18.7-19.2)+(20.1-19.2)}{2.01}\right\}}{5}
\end{aligned}
$$

$$
=\frac{\left\{\frac{16.3+22.4+18.5+18.7+20.1-19.2-19.2-19.2-19.2-19.2}{2.01}\right\}}{5}
$$

$$
=\frac{\left\{\frac{96-19.2 \times 5}{2.01}\right\}}{5}
$$

$$
=\frac{\left\{\frac{96-96}{2.01}\right\}}{5}
$$

$$
=\frac{0}{5}
$$

$$
=0
$$

2. Standard deviation of the standard score of the 100 m track race
$=\sqrt{\frac{\left(\frac{16.3-19.2}{2.01}-0\right)^{2}+\left(\frac{22.4-19.2}{2.01}-0\right)^{2}+\left(\frac{18.5-19.2}{2.01}-0\right)^{2}+\left(\frac{18.7-19.2}{2.01}-0\right)^{2}+\left(\frac{20.1-19.2}{2.01}-0\right)^{2}}{5}}$
$=\sqrt{\frac{\left(\frac{16.3-19.2}{2.01}\right)^{2}+\left(\frac{22.4-19.2}{2.01}\right)^{2}+\left(\frac{18.5-19.2}{2.01}\right)^{2}+\left(\frac{18.7-19.2}{2.01}\right)^{2}+\left(\frac{20.1-19.2}{2.01}\right)^{2}}{5}}$

$=\sqrt{\frac{1}{2.01^{2}} \times \frac{(16.3-19.2)^{2}+(22.4-19.2)^{2}+(18.5-19.2)^{2}+(18.7-19.2)^{2}+(20.1-19.2)^{2}}{5}}$
The numerator has been clarified.
$=\frac{1}{2.01} \times \sqrt{\frac{(16.3-19.2)^{2}+(22.4-19.2)^{2}+(18.5-19.2)^{2}+(18.7-19.2)^{2}+(20.1-19.2)^{2}}{5}}$ The numerator has been clarified.
$=$ 1
standard deviation of the 100 m track race
$=1$

- Standardization helps you examine the value of a data point relative to the rest of your data by using its distance from the mean and "the size of scattering" of the data.
- Use standardization to:
- Compare variables with different ranges
- Compare variables that use different units of measurements
- A data point that has been standardized is called the standard score for that observation. Deviation score is an application of standard score.

 CIM. U. M …........ … (.). … C. ॥. M. ㄴ.. I. . ㄴ.. M. $\stackrel{\square}{\mathrm{Cl}} \mathrm{Cl}$ I. M. M. ㄴ. ©. .. I. . . M. ※....... ㄴ..
高...... (I). I. U U........ U. ㄴ. M. M. I. C. ॥... $\stackrel{\text { U. }}{ }$ M. M. $\stackrel{H}{ }$ … I. . ॥.......
 C. …… I. I.
 U. I. …........ ㄴ..…… I. $\stackrel{M}{\mathrm{M}} \mathrm{M}$ M......... I. . M. I...... M. \because. C.高. .
 UCUI

LET'S OBTAIN THE PROBABILITY

1. PROBABILITY DENSITY FUNCTION

2. NORMAL DISTRIBUTION

WHEN THE FORMULA FOR PROBABILITY DENSITY FUNCTION OF X IS

$$
f(x)=\frac{1}{(\text { standard deviation of } x) \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\text { mean of } x}{\text { standard deviation of } x}\right)^{2}}
$$

YOU SAY THAT "X FOLLOWS A NORMAL DISTRIBUTION WITH MEAN μ AND STANDARD DEVIATION $\sigma . "$

3. STANDARD NORMAL DISTRIBUTION

WHEN THE FORMULA FOR PROBABILITY DENSITY FUNCTION OF X IS

$$
f(x)=\frac{1}{(\text { standard deviation of } x) \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\text { mean of } x}{\text { standard deviation of } x}\right)^{2}}
$$

$$
=\frac{1}{1 \times \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-0}{1}\right)^{2}}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

YOU DON'T SAY, "X FOLLOWS A NORMAL DISTRIBUTION WITH MEAN O AND STANDARD DEVIATION 1." IN STATISTICS, WE DESCRIBE THIS AS A STANDARD NORMAL DISTRIBUTION.

TABLE OF STANDARD NORMAL DISTRIBUTION									
0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
\cdots	\ldots	\ldots
0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
...		

92 CHAPTER 5

yEs. THAT IS THE AREA WHEN $z=1.96$.

THE AREA BOUNDED BY THE STANDARD NORMAL DISTRIBUTION AND THE HORIZONTAL AXIS IS THE SAME AS THE PROBABILITY!

94 CHAPTER 5

EXAMPLE I

All high school freshmen in prefecture B took a math test. After the tests were marked, the test results turned out to follow a normal distribution with a mean of 45 and a standard deviation of 10. Now, think carefully. The five sentences below all have the same meaning.

1. In a normal distribution with an average of 45 and a standard deviation of 10 , the shaded area in the chart below is 0.5 .

2. The ratio of students who scored 45 points or more is 0.5 (50% of all students tested).
3. When one student is randomly chosen from all students tested, the probability that the student's score is 45 or more is $0.5(50 \%)$.
4. In a normal distribution of standardized "math test results," the ratio of students with a standard score of 0 or more is 0.5 (50% of all students tested).

5. When one student's results are randomly chosen from all of those tested in a normal distribution of standardized "math test results," the probability that the selected student's standard score is 0 or more is 0.5 (50\%).

EXAMPLE II

All high school freshmen in prefecture B took a math test. Now, think carefully.
The five sentences below all have the same meaning.

1. In a normal distribution with a mean of 45 and a standard deviation of 10 , the shaded area in the chart below is $0.5-0.4641=0.0359$.

2. The ratio of students who scored 63 points or more is $0.5-0.4641=0.0359(3.59 \%$ of all students tested).
3. When one student is randomly chosen from all those tested, the probability that the student's score is 63 or more is $0.5-0.4641=0.0359(3.59 \%)$.
4. In a normal distribution of standardized test results, the ratio of students with standard scores
(or z-scores) of 1.8 or more [(each value - average) \div standard deviation $=(63-45) \div 10=18 \div 10=$ 1.8] is $3.59 \%(0.5-0.4641=0.0359)$. You can also obtain this value from a table of standard normal distribution.

5. When one student is randomly chosen from all those tested in a normal distribution of standardized "math test results," the probability that the student's standard score is 1.8 or more is $0.5-0.4641=$ 0.0359 (3.59%).

4. CHI-SQUARE DISTRIBUTION

2 DEGREES OF FREEDOM

10 DEGREES OF FREEDOM

20 DEGREES OF FREEDOM

JUST LIKE THERE IS A TABLE OF PROBABILITIES FOR THE STANDARD NORMAL DISTRIBUTION,

THERE IS A TABLE OF PROBABILITIES FOR THE CHI-SQUARE DISTRIBUTION.

DEGREES OF FREEDOM								
TABLE OF CHI-SQUARE DISTRIBUTION								
AP	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005
1	0.000039	0.0002	0.0010	0.0039	3.8415	5.0239	6.6349	7.8794
2	0.0100	0.0201	0.0506	0.1026	5.9915	7.3778	9.2104	10.5965
3	0.0717	0.1148	0.2158	0.3518	7.8147	9.3484	11.3449	12.8381
4	0.2070	0.2971	0.4844	0.7107	9.4877	11.1433	13.2767	14.8602
5	0.4118	0.5543	0.8312	1.1455	11.0705	12.8325	15.0863	16.7496
6	0.6757	0.8721	1.2373	1.6354	12.5916	14.4494	16.8119	18.5475
7	0.9893	1.2390	1.6899	2.1673	14.0671	16.0128	18.4753	20.2777
8	1.3444	1.6465	2.1797	2.7326	15.5073	17.5345	20.0902	21.9549
9	1.7349	2.0879	2.7004	3.3251	16.9190	19.0228	21.6660	23.5893
10	2.1558	2.5582	3.2470	3.9403	18.3070	20.4832	23.2093	25.1881
...

5. T DISTRIBUTION

The probability density function below is a popular topic in statistics.
$f(x)=\frac{\int_{0}^{\infty} \frac{\Delta f+1}{2}-1}{e^{-x} d x} \sqrt{\mathrm{df} \times \pi \times \int_{0}^{\infty} \frac{\mathrm{df}}{} x^{-1} e^{-x} d x} \times\left(1+\frac{x^{2}}{\mathrm{df}}\right)^{-\frac{\mathrm{df}+1}{2}}$

When the probability density function for x looks like this, we say, " x follows a t distribution with n degrees of freedom."

Here is a case with 5 degrees of freedom:

6. F DISTRIBUTION

The probability density function below is a popular topic in statistics.
when $x>0$:

when $x \leq 0$: $f(x)=0$
When the probability density function for x looks like this, we say, " x follows an F distribution with the first degree of freedom m and the second degree of freedom n."

Here is a case in which the first degree of freedom is 10 and the second degree of freedom is 5 :

7. DISTRIBUTIONS AND EXCEL

Until the rise of personal computers (roughly speaking, around the beginning of the 1990s), it was difficult for an individual to calculate the probability without tables of standard normal distribution or chi-square distribution. However, these tables of distribution are not used much anymore-you can use Excel functions to find the same values as the ones provided by the tables. This enables individuals to calculate even more types of values than the ones found in the tables of distribution. Table 5-1 summarizes Excel functions related to various distributions. (Refer to the appendix on page 191 for more information on making calculations with Excel.)

TABLE 5-1: EXCEL FUNCTIONS RELATED TO VARIOUS DISTRIBUTIONS

Distribution	Functions	Feature of the function
normal *	NORMDIST	Calculates the probability that corresponds to a point on the horizontal axis.
normal	NORMINV	Calculates a point on the horizontal axis that corresponds to the probability.
standard normal	NORMSDIST	Calculates the probability that corresponds to a point on the horizontal axis.
standard normal	NORMSINV	Calculates a point on the horizontal axis that corresponds to the probability.
chi-square	CHIDIST	Calculates the probability that corresponds to a point on the horizontal axis.
chi-square	CHIINV	Calculates a point on the horizontal axis that corresponds to the probability.
t	TDIST	Calculates the probability that corresponds to a point on the horizontal axis.
t	TINV	Calculates a point on the horizontal axis that corresponds to the probability.
F	FDIST	Calculates the probability that corresponds to a point on the horizontal axis.
F	FINV	Calculates a point on the horizontal axis that corresponds to the probability.

[^0]
EXERCISE

1. Calculate the probability (the shaded area in the graph below) using the table of standard normal distribution on page 93.

2. Calculate the value of χ^{2} when there are 2 degrees of freedom and P is 0.05 using the table of chi-square distribution on page 103.

ANSWER

1. Because the standard normal distribution is symmetrical, the probability in question is equal to the probability shown in the graph below.

The probability when $z=0.29=0.2+0.09$ is 0.1141 according to the table of standard normal distribution. Therefore, the probability to be obtained is $0.5-0.1141=0.3859$.
2. The value of χ^{2} to be obtained is 5.9915 according to the table of chi-square distribution.

- Some of the most common probability density functions are:
- Normal distribution
- Standard normal distribution
- Chi-square distribution
- t distribution
- F distribution
- The area between the probability density function and the horizontal axis is 1 . This area is equivalent to a ratio or a probability.
- By using an Excel function or a table of probabilities for the appropriate distribution, you can calculate:
- The probability that corresponds to a point on the horizontal axis
- The point on the horizontal axis that corresponds to the probability
/期. C. 1. U. USM. U. C. II. I... ㄴ..… 은......... O. ॥. M. U. H. M. C U. \because ॥ O. . M. M. М. (.). . CI. Ø...... U. \because. U. I. . O. CICUTI $\because \triangle$ U...... C. M. M. O. . U. O M. M. Cl . O. M. U. U. ॥....... M. O. . A. \because, M. ॐ U. M. O...... C. M. \because C. M. I. M. C. U

LET'S LOOK AT THE RELATIONSHIP BETWEEN TWO VARIABLES
 8

 IM U, U
/

MR.
YAMAMOTO'S
QUIRKS ARE TOO STRONG, AND THAT'S MAKING ME FORGET

SO, FOR EXAMPLE, DOES A TALLER PERSON WEIGH MORE? OR, DO PEOPLE FAVOR DIFFERENT SODA BRANDS IF THEY ARE DIFFERENT IN AGE?

SCATTER CHART OF HEIGHT AND WEIGHT

SCATTER CHART OF FAVORITE SODA BRAND AND AGE

CYLINDER CHART OF PLACE OF RESIDENCE AND SUPPORT OF POLITICAL PARTY X

$\leftarrow \begin{gathered}\text { NUMERICAL AND } \\ \text { CATEGORICAL }\end{gathered}$

WE'LL FIGURE OUT THE COEFFICIENT THAT CAN BE USED TOGETHER WITH THE CHART TO DESCRIBE CORRELATION, OR THE DEGREE OF LINEAR RELATION OF TWO VARIABLES.

1. CORRELATION COEFFICIENT

SCATTER CHART OF MONTHLY EXPENDITURES ON MAKEUP AND CLOTHES

AMOUNT SPENT ON MAKEUP ($~(~) ~$

Data types	Index	Value range	Formula
Numerical and numerical	Correlation coefficient	$-1-1$	$\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \times \sum(y-\bar{y})^{2}}}=\frac{\mathrm{Sxy}}{\sqrt{S x x \times \text { Syy }}}$
Numerical and categorical	Correlation ratio*	$0-1$	$\frac{\text { interclass variance }}{\text { intraclass variance + interclass variance }}$
Categorical and categorical	Cramer's coefficient	$0-1$	$\sqrt{\frac{\chi_{0}^{2}}{\text { (minnthe number of lines in the cross tabulation, the number of rows in the cross tabulation\} - 1) }}}$

"See page 121, "Correlation Ratio," and page 127, "Cramer's Coefficient."

WARNING

I mentioned earlier that the correlation coefficient is an index that shows the degree of linear relation between two numerical variables.

SAMPLE OF DATA UNSUITABLE FOR CORRELATION COEFFICIENT

For example, the two variables are obviously related in this chart. However, the correlation coefficient is almost 0 because the relationship is non-linear.
2. CORRELATION RATIO

ON WE GO! THEY HAVE ALSO SURVEYED AGE AND FAVORITE FASHION BRAND!

Street Survey in Everyhills Age and Favorite Fashion Brand

Respondent	Age	Brand
Ms. A	27	Theremes
Ms. B	33	Channelior
Ms. C	16	Bureperry
Ms. D	29	Bureperry
Ms. E	32	Channelior
Ms. F	23	Theremes
Ms. G	25	Channelior
Ms. H	28	Theremes
Ms. I	22	Bureperry
Ms. J	18	Bureperry
Ms. K	26	Channelior
Ms. L	26	Theremes
Ms. M	15	Bureperry
Ms. N	29	Channelior
Ms. O	26	Bureperry

The value of the correlation ratio can be calculated by following steps 1 through 4 below.

Step 1

Do the calculations in the table below.

		Sum
(Theremes - average for Theremes) ${ }^{2}$	$\begin{aligned} & (23-26)^{2}=(-3)^{2}=9 \\ & (26-26)^{2}=0^{2}=0 \\ & (27-26)^{2}=1^{2}=1 \\ & (28-26)^{2}=2^{2}=4 \end{aligned}$	
(Channelior - average for Channelior) ${ }^{2}$	$\begin{aligned} & (25-29)^{2}=(-4)^{2}=16 \\ & (26-29)^{2}=(-3)^{2}=9 \\ & (29-29)^{2}=0^{2}=0 \\ & (32-29)^{2}=3^{2}=9 \\ & (33-29)^{2}=4^{2}=16 \end{aligned}$	50
(Bureperry - average for Bureperry) ${ }^{2}$	$\begin{aligned} & (15-21)^{2}=(-6)^{2}=36 \\ & (16-21)^{2}=(-5)^{2}=25 \\ & (18-21)^{2}=(-3)^{2}=9 \\ & (22-21)^{2}=1^{2}=1 \\ & (26-21)^{2}=5^{2}=25 \\ & (29-21)^{2}=8^{2}=64 \end{aligned}$	

Step 2

Calculate the intraclass variance $\left(S_{T T}+S_{C C}+S_{B B}=\right.$ how much the data within each category varies).
$S_{T T}+S_{C C}+S_{B B}=14+50+160=224$

Step 3

Calculate the interclass variance, or how different the categories are from each other.
(number of votes for Theremes) \times (average for Theremes - average for all data) ${ }^{2}$
$+\left(\right.$ number of votes for Channelior) $\times\left(\right.$ average for Channelior - average for all data) ${ }^{2}$
$+\left(\right.$ number of votes for Bureperry) $\times\left(\right.$ average for Bureperry - average for all data) ${ }^{2}$

$$
\begin{aligned}
& 4 \times(26-25)^{2}+5 \times(29-25)^{2}+6 \times(21-25)^{2} \\
= & 4 \times 1+5 \times 16+6 \times 16 \\
= & 4+80+96 \\
= & 180
\end{aligned}
$$

Step 4

Calculate the value of the correlation ratio.
\qquad
interclass variance
intraclass variance + interclass variance
$\frac{180}{224+180}=\frac{180}{404}=0.4455$

As explained earlier, the value of the correlation ratio is between 0 and 1. The stronger the correlation is between the two variables, the closer the value is to 1 , and the weaker the correlation is between two variables, the closer the value is to 0 . Refer to the charts below for more details.

Here is a scatter chart of favorite fashion brand and age (when the correlation ratio is 1).

correlation ratio is $1 \Leftrightarrow$ data included in each group is the same \Leftrightarrow intraclass variance is 0

Here is a scatter chart of favorite fashion brand and age (when the correlation ratio is 0).

[^1]

Unfortunately, there are no statistical standards such as "the two variables have a strong correlation if the correlation ratio is above a certain benchmark." However, informal standards are given below.

INFORMAL STANDARDS OF THE CORRELATION RATIO

Correlation ratio		Detailed description	Rough description
$1.0-0.8$		Very strongly related	
$0.8-0.5$	\Rightarrow	Fairly strongly related	Related
$0.5-0.25$	\Rightarrow	Fairly weakly related	
Below 0.25	\Rightarrow	Very weakly related	Not related

The result of the calculation for the case in question was 0.4455 , so the variables are fairly weakly related!

3. CRAMER'S COEFFICIENT

I WONDER IF THERE IS A GOOD EXAMPLE I CAN USE TO EXPLAIN THE CORRELATION OF TWO CATEGORICAL VARIABLES.

HMMM..."MY IDEAL WAY OF BEING ASKED OUT IS PHONE, E-MAIL, FACE TO FACE"...?

THIS WOULD MAKE A GOOD EXAMPLE.

CROSS TABULATION OF SEX AND DESIRED WAY OF BEING ASKED OUT

		DESIRED WAY OF BEING ASKED OUT		SUM								
		PHONE	E-MAIL FACE TO FACE									
SEX	FEMALE	34	61	53	148							
	MALE	38	40	74	152							
	SUM								72	101	127	300

This indicates that 74 out of 152 males answered that they'd like to be asked out directly.

CROSS TABULATION OF SEX AND DESIRED WAY OF BEING ASKED OUT (HORIZONTAL PERCENTAGE TABLE)

		DESIRED WAY OF BEING ASKED OUT		SUM		
		PHONE	E-MAIL			
SEX	FEMALE	23%	41%	36%	100%	
	MALE	25%	26%	49%	100%	
	SUM		24%	34%	42%	100%

This shows that $49 \%\left(\frac{74}{152} \times 100\right)$ of the 152 males would like to be asked out directly.

IT INDEED SEEMS THAT THERE IS A DIFFERENCE IN THE DESIRED WAY OF BEING ASKED OUT BETWEEN GIRLS AND BOYS.

IN OTHER WORDS, THERE IS A CORRELATION BETWEEN SEX AND DESIRED WAY OF BEING ASKED OUT.

WHAT WAS THE INDEX TO EXPRESS THE DEGREE OF CORRELATION BETWEEN TWO PIECES OF CATEGORICAL DATA?

THE CRAMER'S COEFFICIENT IS ALSO CALLED THE CRAMER'S V OR AN INDEPENDENT COEFFICIENT.

SO MUCH NEW VOCABULARY INTO MY HEAD!

The Cramer's coefficient can be calculated by following steps 1 through 5 below.

Step 1

Prepare a cross tabulation. The values surrounded by the bold frame are called actual measurement frequencies.

		Desired way of being asked out			Sum	
		Phone	E-mail	Face to face		
Sex	Female	34	61	53	148	
	Male	38	40	74	152	
	Sum		72	101	127	300

Step 2

Do the calculations in the table below. The values surrounded by the bold frame are called expected frequencies.

If sex and desired way of being asked out have no relationship, the ratio between phone, e-mail, and face to face should be

$$
\begin{aligned}
72: 101: 127 & =\frac{72}{72+101+127}: \frac{101}{72+101+127}: \frac{127}{72+101+127} \\
& =\frac{72}{300}: \frac{101}{300}: \frac{127}{300}
\end{aligned}
$$

for both males and females, according to the sum column in the table in step 2.
 Thus, our expected frequency (Formula A) shows the predicted number of males who wish to be asked out directly when there is no relationship between sex and desired way of being asked out is $152 \times(127 \div 300)=(152 \times 127) \div 300$, or

$$
152 \times \frac{127}{300}=\frac{152 \times 127}{300}=64.3
$$

Step 3
Calculate $\frac{(\text { actual frequency - expected frequency) })^{2}}{\text { expected frequency }}$ for each square.

The bigger the gap between the actual frequencies and the expected frequencies, the larger the values in each square become.

Step 4

Calculate the sum of the value inside the bold frame in the table of step 3. This value is called Pearson's chi-square test statistic. It will be written as χ_{0}^{2} from now on.

$$
\begin{aligned}
x_{0}^{2} & =\frac{\left(34-\frac{148 \times 72}{300}\right)^{2}}{\frac{148 \times 72}{300}}+\frac{\left(61-\frac{148 \times 101}{300}\right)^{2}}{\frac{148 \times 101}{300}}+\frac{\left(53-\frac{148 \times 127}{300}\right)^{2}}{\frac{148 \times 127}{300}} \\
& +\frac{\left(38-\frac{152 \times 72}{300}\right)^{2}}{\frac{152 \times 72}{300}}+\frac{\left(40-\frac{152 \times 101}{300}\right)^{2}}{\frac{152 \times 101}{300}}+\frac{\left(74-\frac{152 \times 127}{300}\right)^{2}}{\frac{152 \times 127}{300}} \\
& =8.0091
\end{aligned}
$$

As can be understood from step 3, the more the actual measurements diverge from their expected frequencies, or the greater the correlation between sex and desired way of being asked out, the larger Pearson's chi-square test statistic $\left(\chi_{0}{ }^{2}\right)$ becomes.

Step 5

Calculate the Cramer's coefficient.

$$
\sqrt{\frac{\chi_{0}^{2}}{\begin{array}{c}
\text { the total number of values } \times \\
\text { (min\{the number of lines in the cross tabulation, the number of rows in the cross tabulation\} - 1) }
\end{array}}}
$$

$\min \{a, b\}$ means "whichever is smaller, a or b."

$$
\sqrt{\frac{8.0091}{300 \times \min \{2,3\}-1}}=\sqrt{\frac{8.0091}{300 \times(2-1)}}=\sqrt{\frac{8.0091}{300}}=0.1634
$$

As explained earlier, the Cramer's coefficient is between 0 and 1. The stronger the correlation between two variables, the closer the coefficient gets to 1, and the weaker the correlation, the closer the coefficient gets to 0 . See the cross tabulation (horizontal percentage table) below for more details.

Here is the cross tabulation of sex and desired way of being asked out (horizontal percentage table) when the value of the Cramer's coefficient is 1 .

		Desired way of being asked out			Sum
		Phone	E-mail	Face to face	
Sex	Female	17%	83%	0%	100%
	Male	0%	0%	100%	100%

Cramer's coefficient is $1 \Leftrightarrow$ the preferences of female and male are completely different

Here is the cross tabulation of sex and desired way of being asked out (horizontal percentage table) when the value of the Cramer's coefficient is 0 .

		Desired way of being asked out			Sum
		Phone	E-mail	Face to face	
Sex	Female	17%	48%	35%	100%
	Male	17%	48%	35%	100%

Cramer's coefficient is $0 \Leftrightarrow$ the preferences of female and male are the same

Unfortunately, there are no statistical standards such as "the two variables have a strong correlation if the Cramer's coefficient is above a certain benchmark." However, informal standards are given below.

INFORMAL STANDARDS OF THE CRAMER'S COEFFICIENT

Cramer's coefficient		Detailed description 1.0-0.8	\Rightarrow	Rough description
$0.8-0.5$	\Rightarrow	Fairly strongly related	Related	
$0.5-0.25$	\Rightarrow	Fairly weakly related		
Below 0.25	\Rightarrow	Very weakly related	Not related	

IN THE LAST PART OF TODAY'S LESSON, I TAUGHT YOU ABOUT THE CRAMER'S COEFFICIENT.

BASED ON WHAT I HAVE TAUGHT YOU TODAY, WE WILL STUDY TESTS OF INDEPENDENCE IN THE NEXT LESSON.

EXERCISE

Company X runs a casual dining restaurant. Its financial status was declining recently. Thus, Company X decided to study its customers' needs and conducted a survey of randomly chosen people, age 20 or older, residing in Japan. The table below shows the results of this survey.

Respondent	What food do you often have in a casual dining restaurant?	If a free drink is to be served after a meal, which would you prefer? Coffee or tea?
1	Chinese	Coffee
2	European	Coffee
\ldots	...	\ldots
250	Japanese	Tea

Below is a cross tabulation made using the table above.

		Preference for coffee or tea		Sum
		Coffee	Tea	
Type of food often ordered	Japanese	43	33	76
	European	51	53	104
	Chinese	29	41	70
Sum		123	127	250

Calculate the Cramer's coefficient for the food often ordered in casual dining restaurants and the preferred free drink of either coffee or tea.

ANSWER

Step 1

Prepare a cross tabulation.

		Preference for coffee or tea		Sum
		Coffee	Tea	
Type of food often ordered	Japanese	43	33	76
	European	51	53	104
	Chinese	29	41	70
Sum		123	127	250

Step 2

Calculate the expected frequency.

		Preference for coffee or tea		Sum
		Coffee	Tea	
Type of food often ordered	Eapanese	$\frac{76 \times 123}{250}$	$\frac{76 \times 127}{250}$	76
	Curopean	$\frac{104 \times 123}{250}$	$\frac{104 \times 127}{250}$	104
	Chinese	$\frac{70 \times 123}{250}$	$\frac{70 \times 127}{250}$	70
Sum		123	127	250

Step 3

Calculate
(actual measurement frequency - expected frequency) ${ }^{2}$ expected frequency
for each square.

		Preference for coffee or tea		Sum
		Coffee	Tea	
Type of food often ordered	Japanese	$\frac{\left(43-\frac{76 \times 123}{250}\right)^{2}}{\frac{76 \times 123}{250}}$	$\frac{\left(33-\frac{76 \times 127}{250}\right)^{2}}{\frac{76 \times 127}{250}}$	76
	European	$\frac{\left(51-\frac{104 \times 123}{250}\right)^{2}}{\frac{104 \times 123}{250}}$	$\frac{\left(53-\frac{104 \times 127}{250}\right)^{2}}{\frac{104 \times 127}{250}}$	104
	Chinese	$\frac{\left(29-\frac{70 \times 123}{250}\right)^{2}}{\frac{70 \times 123}{250}}$	$\frac{\left(41-\frac{70 \times 127}{250}\right)^{2}}{\frac{70 \times 127}{250}}$	70
Sum		123	127	250

Step 4

Calculate the sum of the value inside the bold frame in the table in step 3 , which is the value of Pearson's chi-square test statistic $\left(\chi_{0}{ }^{2}\right)$.

$$
\begin{aligned}
\chi_{0}^{2} & =\frac{\left(43-\frac{76 \times 123}{250}\right)^{2}}{\frac{76 \times 123}{250}}+\frac{\left(33-\frac{76 \times 127}{250}\right)^{2}}{\frac{76 \times 127}{250}} \\
& +\frac{\left(51-\frac{104 \times 123}{250}\right)^{2}}{\frac{104 \times 123}{250}}+\frac{\left(53-\frac{104 \times 127}{250}\right)^{2}}{\frac{104 \times 127}{250}} \\
& +\frac{\left(29-\frac{70 \times 123}{250}\right)^{2}}{\frac{70 \times 123}{250}}+\frac{\left(41-\frac{70 \times 127}{250}\right)^{2}}{\frac{70 \times 127}{250}} \\
& =3.3483
\end{aligned}
$$

Step 5
Calculate the Cramer's coefficient.

$$
x_{0}^{2}
$$

$\sqrt{\text { the total }}$ number of values $\times\left(\min \left\{\begin{array}{c}\text { the number of lines the number of rows } \\ \text { in the cross tabulation, }\end{array}\right.\right.$ in the cross tabulation $\left.\}-1\right)$
$\sqrt{\frac{3.3483}{250 \times(\min \{3,2\}-1)}}=\sqrt{\frac{3.3483}{250 \times(2-1)}}=\sqrt{\frac{3.3483}{250}}=0.1157$

- The index used to describe the degree of correlation between numerical data and numerical data is the correlation coefficient.
- The index used to describe the degree of correlation between numerical data and categorical data is the correlation ratio.
- The index used to describe the degree of correlation between categorical data and categorical data is the Cramer's coefficient (sometimes called the Cramer's V or an independent coefficient).
- The characteristics of the correlation coefficient, correlation ratio, and Cramer's coefficient are shown in the table below.

	Minimum	Maximum	The value when the two variables are not correlated at all	The value when the two variables are most strongly correlated
Correlation coefficient	-1	1	0	-1 or 1
Correlation ratio	0	1	0	1
Cramer's coefficient	0	1	0	1

- There are no statistical standards for the correlation coefficient, correlation ratio, and Cramer's coefficient, such as "the two variables have a strong correlation if the value is above a certain benchmark."
，

黄．．．．．．．．． …．．．．．．．． ㄴ․… …．．．．． I．．．．．．．． ※． ※．．．．．．．．．．．． …．．．．． …… \＃．．．．．． \＃．．．．．．．．． \＃．
 … 4． …．．．．． …．．．．
 ※．．．．．． \％．．．．．．．新． I．．．．．．．． H．I．．．．． \＃\＃， ㅍ．．．．．．．． 3．．．．．．． U．．．．． I．．．．．．．．． ㄴ․․․․․ I．．．．．．
 \＃．．．．．．．．． I．．．．．．．．．里． I．．．．．．． … ．．．．． …．．．．．． I．．．．．．． \％． \＃．．．．．． 3． …．．．．．．街．
 ※．．．．．．．．．．．．
 \＃．．．．．．．兴．．．．．．．．． H．． …．．．． …．．．． U．． …
 ……．．．． I．．．．．．．．．．．．．．．
 \＃\＃

\square LET＇S EXPLORE THE HYPOTHESIS TESTS

俭

DO YOU HAVE ANY IDEA What the value of the CRAMER'S COEFFICIENT FOR THE POPULATION OF THIS EXAMPLE, ALL HIGH SCHOOL STUDENTS RESIDING IN JAPAN, WOULD BE IN THE FIRST PLACE?

PROCEDURE FOR A HYPOTHESIS TEST
Step 1 Define the population.

Step 2 Set up a null hypothesis and an alternative hypothesis.
Step 3 Select which hypothesis test to conduct.
Step 4 Determine the significance level.
Step 5 Obtain the test statistic from the sample data.
Step 6 Determine whether the test statistic obtained in step 5 is in the critical region.
Step 7 If the test statistic is in the critical region, you must reject the null hypothesis. If not, you fail to reject the null hypothesis.

2. THE CHI-SQUARE TEST OF INDEPENDENCE

I TOLD YOU THAT A TEST OF INDEPENDENCE IS AN ANALYSIS TECHNIQUE USED TO ESTIMATE WHETHER THE CRAMER'S COEFFICIENT FOR A POPULATION IS ZERO.

EXPLANATION

Pearson's chi-square test statistic $\left(\chi_{0}^{2}\right)$ and chi-square distribution

Before giving an actual example of a test of independence, I would like to explain an important fact that is fundamental to tests of independence. Though it is impossible to do this in reality, suppose the below experiment is conducted.

Step 1

Take a random sample of 300 students from the population "all high school students residing in Japan."

Step 2

Conduct the survey on page 127 with the 300 people chosen in step 1 to obtain the chi-square statistic $\left(\chi_{0}^{2}\right)$.

Step 3

Put the 300 people back into the population.

Step 4

Repeat steps 1 through 3 over and over.
In this experiment, if the value of the Cramer's coefficient for the population "all high school students residing in Japan" is 0 , the graph of Pearson's chi-square test statistic $\left(\chi_{0}{ }^{2}\right)$ turns out to be a chi-square distribution with 2 degrees of freedom. In other words, if the value of the Cramer's coefficient for the population "all high school students residing in Japan" is 0 , then Pearson's chi-square test statistic $\left(\chi_{0}^{2}\right)$ follows a chisquare distribution with 2 degrees of freedom.

- See pages 130-133 for information on how to obtain Pearson's chi-square test statistic $\left(\chi_{0}{ }^{2}\right)$.
- See page 100 for information on a chi-square distribution with 2 degrees of freedom.

We have actually conducted this experiment. In carrying out the experiment, we set the restrictions below.

- As it is impossible to experiment with the actual population of "all high school students residing in Japan," the group of 10,000 people in Table 7-1 will be regarded as "all high school students residing in Japan" instead.
- We assume that the Cramer's coefficient for "all high school students residing in Japan" is 0 . This means that the ratio of those who prefer being asked out by phone to those who prefer being asked out by e-mail to those who prefer being asked out directly is equal for girls and boys (see page 135). The cross tabulation for Table 7-1 is Table 7-2.
- Since it is otherwise endless, we will stop repeating steps 1 through 3 after 10,000 times.

TABLE 7-1: DESIRED WAY OF BEING ASKED OUT (ALL HIGH SCHOOL STUDENTS RESIDING IN JAPAN)

Respondent	Sex	Desired way of being asked out
1	Female	Face to face
2	Female	Phone
\ldots	\ldots	\ldots
10,000	Male	E-mail

TABLE 7-2: CROSS TABULATION OF SEX AND DESIRED WAY OF BEING ASKED OUT

		Desired way of being asked out			Sum	
		Phone	E-mail	Face to face		
Sex	Female	400	1,600	2,000	4,000	
	Male	600	2,400	3,000	6,000	
	Sum		1,000	4,000	5,000	10,000

Table 7-3 shows the result of the experiment. Figure 7-1 is a histogram made according to Table 7-3.

TABLE 7-3: RESULT OF EXPERIMENT

Experiment	Pearson's chi-square test statistic $\left(\chi_{0}^{2}\right)$
1	0.8598
2	0.7557
\ldots	\ldots
10,000	2.7953

FIGURE 7-1: A HISTOGRAM BASED ON TABLE 7-3 (RANGE OF CLASS = 1)

Figure 7-1 indeed looks similar to the graph on page 100, "2 Degrees of Freedom." It seems to be correct that Pearson's chi-square test statistic $\left(\chi_{0}^{2}\right)$ follows a chi-square distribution with 2 degrees of freedom. Though this has nothing to do with the experiment itself, here is one point to note. Two degrees of freedom comes from:

I will not go into why such a strange calculation is applied, as it is a topic much too advanced for the level of this book. But don't worry-even if you don't fully understand the calculation, you won't be at any disadvantage.

THEN, I SURVEY 300 PEOPLE SELECTED FROM "ALL HIGH SCHOOL STUDENTS RESIDING IN JAPAN."

Fint EXERCISE

P-Girls Magazine decided to publish an article titled "We Asked 300 High School Students, 'How Would You Like to Be Asked Out?'" In order to prepare the article, a journalist randomly chose 300 people from all the high school students residing in Japan and took a survey. The table below is the result of this survey.

Respondent	Desired way of being asked out	Age	Sex
1	Face to face	17	Female
2	Phone	15	Female
\ldots	\ldots	\ldots	\ldots
300	E-mail	18	Male

The table below is the cross tabulation of sex and desired way of being asked out.

		Desired way of being asked out			Sum	
		Phone	E-mail	Face to face		
Sex	Female	34	61	53	148	
	Male	38	40	74	152	
	Sum		72	101	127	300

Using the chi-square test of independence, estimate if the Cramer's coefficient for sex and desired way of being asked out in the population "all high school students residing in Japan" is greater than 0 . This is the same as estimating with a test of independence whether sex and desired way of being asked out are correlated. Remember that the significance level (explained later) is 0.05 .

THINKING IT OVER

As explained on pages 152-154, Pearson's chi-square test statistic $\left(\chi_{0}^{2}\right)$ follows a chi-square distribution with 2 degrees of freedom if the null hypothesis states that the value of the Cramer's coefficient for the population "all high school students residing in Japan" is 0 . If that's true, then the probability that χ_{0}^{2} obtained from the 300 people who have been chosen randomly is 5.9915 or more is 0.05 .

FIGURE 7-2: PROBABILITY THAT $\chi_{0}{ }^{2}$ IS 5.9915 OR MORE

This is clear from the table of chi-square distribution on page 103.
χ_{0}^{2} for this exercise has already been calculated on page 132. It is 8.0091 . True, this figure has been calculated based on data from 300 randomly chosen people, but doesn't this seem too large? Taking into consideration the comment on page 132, isn't it natural to assume that the Cramer's coefficient for the population "all high school students residing in Japan" is greater than 0 ?

Remember that the process for a chi-square test of independence (not limited to this exercise) goes like this:

1. Assume a null hypothesis that "the Cramer's coefficient for the population is 0 " for the time being.
2. Calculate χ_{0}^{2} from the sample data.
3. If χ_{0}^{2} is too large, reject the null hypothesis and conclude that "the Cramer's coefficient for the population is greater than 0 ."

As χ_{0}^{2} becomes larger, the probability shown as the shaded area in Figure 7-3 naturally becomes smaller.
FIGURE 7-3: PROBABILITY IN CORRESPONDENCE TO χ_{0}^{2}

In chi-square tests of independence, if the probability shown as the shaded area in Figure 7-3 is less than or equal to the value called the significance level, reject the null hypothesis and conclude that "the Cramer's coefficient for the population is greater than 0 ." In general, the significance level (also called the alpha value and expressed by the symbol α) is considered to be 0.05 or 0.01 .

It is up to the analyst which significance level to use. Suppose we decide to use 0.05 as the significance level in this case. The significance level is in fact the probability expressed as the shaded area in Figure 7-3.

The shaded area in Figure 7-4 is called the critical region.

FIGURE 7-4: CRITICAL REGION
(WHEN SIGNIFICANCE LEVEL IS 0.05)

ANSWER

Step 1

Define the population.

The population is:

In this exercise, the population was defined as "all high school students residing in Japan." Thus, in this particular exercise, step 1 is unnecessary.

However, for "Tests of difference between population ratios" in the table on page 149, the populations in question are "voters residing in urban areas" and "voters residing in rural areas." Where are the urban areas exactly? Are they Tokyo and Osaka? Or are they the capitals of the prefectures? This must be specified by the analyst.

I repeat: When you are actually doing a hypothesis test, you must determine the population. No matter which hypothesis test you are trying to carry out, you must not fail to properly define the population.

Otherwise, you might fall into a situation in which you are lost, wondering, "What was I trying to estimate?" Lots of statisticians fall into traps like this. Take great care about this point.

Step 2

Set up a null hypothesis and an alternative hypothesis.

The null hypothesis is: "The Cramer's coefficient for the population is 0 . In other words, sex and desired way of being asked out are not correlated."

The alternative hypothesis is: "The Cramer's coefficient for the population is greater than 0 . In other words, sex and desired way of being asked out are correlated."

An explanation of null hypotheses and alternative hypotheses is given on page 170.

Step 3

Choose which hypothesis test to do.

I am going to do a chi-square test of independence.

This exercise asks you to do a chi-square test of independence. So in this particular exercise, step 3 is unnecessary.
(When you are actually doing a hypothesis test and not an exercise, you must select the hypothesis test suitable for the objective of analysis on your own.)

Step 4

Determine the significance level.

I will use 0.05 as the significance level.

The exercise assigns 0.05 as the significance level, so in this particular exercise, step 4 is unnecessary. When you are actually doing a hypothesis test and not an exercise, you must determine the significance level. As mentioned earlier, normally either 0.05 or 0.01 is used. The smaller the P -value computed from the sample data, the stronger the evidence is against the null hypothesis. In general, the symbol α is used to express the significance level (alpha value).

Step 5

Calculate the test statistic from the sample data.

I am trying to do a chi-square test of independence. Thus the test statistic is Pearson's chi-square test statistic $\left(\chi_{0}^{2}\right)$. The value of χ_{0}^{2} for this exercise has already been calculated on page 132: $\chi_{0}^{2}=8.0091$.

The test statistic is obtained from a function that calculates a single value from the sample data. Different kinds of hypothesis tests have different test statistics. As mentioned above, the value for a test of independence is $\chi_{0}{ }^{2}$, and in the case of tests of correlation (see page 149), the test statistic is as below.
$\frac{\text { correlation coefficient }{ }^{2} \times \sqrt{\text { number of values }-2}}{1-\sqrt{\text { correlation coefficient }^{2}}}$

Step 6

Determine whether or not the test statistic from step 5 is in the critical region.

Pearson's chi-square test statistic $\left(\chi_{0}^{2}\right)$ is 8.0091 . As the significance level (α) is 0.05 , the critical region is 5.9915 or above, according to the table of chi-square distribution on page 103. As shown in the chart below, the test statistic is within the critical region.

The critical region changes depending on the significance level (α). If α in this exercise was 0.01 instead of 0.05 , the critical region would be 9.2104 or above, according to the table of chi-square distribution on page 103.

Step 7

If the test statistic is in the critical region in step 6, you reject the null hypothesis. If not, you fail to reject the null hypothesis. In this case, the test statistic was in the critical region.

Thus the alternative hypothesis, "the Cramer's coefficient for the population is greater than 0, " is correct!

You cannot conclude that the alternative hypothesis is absolutely correct in a hypothesis test, even if the test statistic is within the critical region. The only conclusion you can make is, "I would like to say that the alternative hypothesis is 'absolutely' correct . . . but there is, at most, a $(\alpha \times 100) \%$ possibility that the null hypothesis is correct."

3. NULL HYPOTHESES AND ALTERNATIVE HYPOTHESES

EXAMPLES OF HYPOTHESIS TESTS

Name	Example of use
Tests of independence	Estimates whether the value of the Cramer's coefficient for sex and desired way of being asked out is zero for a population
Tests of correlation ratio	Estimates whether the value of the correlation ratio for favorite fashion brand and age is zero for a population
Tests of correlation	Estimates whether the correlation coefficient for amount spent on makeup and amount spent on clothes is zero for a population
Tests of difference between population means	Estimates whether allowances are different between high school girls in Tokyo and Osaka*
Tests of difference between population ratios	Estimates whether the approval rating of cabinet X is different between voters residing in urban areas and rural areas*

* Note that two populations are being considered.

TESTS OF INDEPENDENCE

Null hypothesis	The Cramer's coefficient for sex and desired way of being asked out is 0 for a population.
Alternative hypothesis	The Cramer's coefficient for sex and desired way of being asked out is greater than 0 for a population.

TESTS OF CORRELATION RATIO

Null hypothesis	The correlation ratio for favorite fashion brand and age is 0 for a population.
Alternative hypothesis	The correlation ratio for favorite fashion brand and age is greater than 0 for a population.

TESTS OF CORRELATION

Null hypothesis	The correlation coefficient for amount spent on makeup and amount spent on clothes is 0 for a population.
Alternative hypothesis	The correlation coefficient for amount spent on makeup and amount spent on clothes is not 0 for a population. or The correlation coefficient for amount spent on makeup and amount spent on clothes is greater than 0 for a population. or The correlation coefficient for amount spent on makeup and amount spent on clothes is less than 0 for a population.

TESTS OF DIFFERENCE BETWEEN POPULATION MEANS

Null hypothesis	The allowances of high school girls in Tokyo and Osaka are the same.
Alternative hypothesis	The allowances of high school girls in Tokyo and Osaka are not the same.
or	
	The allowances of high school girls in Tokyo are larger than those of high school girls in Osaka. or The allowances of high school girls in Tokyo are smaller than those of high school girls in Osaka.

TESTS OF DIFFERENCE BETWEEN POPULATION RATIOS

Null hypothesis	The approval ratings of cabinet X for voters residing in urban areas and rural areas are the same.
Alternative hypothesis	The approval ratings of cabinet X for voters residing in urban areas and rural areas are not the same. or The approval rating of cabinet X for voters residing in urban areas is higher than that of voters residing in rural areas. or The approval rating of cabinet X for voters residing in urban areas is lower than that of voters residing in rural areas.

4. P-VALUE AND PROCEDURE FOR HYPOTHESIS TESTS

Step 6p

Determine whether or not the P -value corresponding to the test statistic obtained in step 5 is smaller than the significance level.

The significance level is 0.05 . Since Pearson's chi-square test statistic ($\chi_{0}{ }^{2}$, which is the test statistic in this case) is 8.0091 , the P -value is 0.0182 .
$0.0182<0.05$
Thus the P -value is smaller.

As mentioned before, you can calculate the P -value using Excel (though this depends on what type of hypothesis test you are doing). See page 208 for details.

Step 7p

If the P -value is smaller than the significance level in step 6 p , you reject the null hypothesis. If not, you fail to reject the null hypothesis.

The P-value was smaller than the significance level. Therefore, you conclude in favor of the alternative hypothesis, "the Cramer's coefficient for the population is greater than $0 . "$

Even if the P-value was smaller than the significance level, you cannot really conclude that the alternative hypothesis is "absolutely" correct in a hypothesis test. The only conclusion you can make is: "I would like to say that the alternative hypothesis is 'absolutely' correct . . . but there is a $(\alpha \times 100) \%$ possibility that the null hypothesis is correct."

5. TESTS OF INDEPENDENCE AND TESTS OF HOMOGENEITY

There is a hypothesis test very similar to a test of independence called a test of homogeneity. Below is an example of a test of homogeneity. As you read it, think about how it is different from a test of independence.

EXAMPLE

P-Girls Magazine published an article titled, "We Asked 300 High School Students, 'How Would You Like to Be Asked Out?"' The choices were phone, e-mail, or face to face.

```
HYPOTHESIS: THE RATIO OF PHONE TO E-MAIL TO FACE-TO-FACE IS DIFFERENT BETWEEN HIGH SCHOOL GIRLS AND BOYS.
```

To find out if this hypothesis is true or not, a journalist actually conducted a survey by randomly choosing respondents from each of the two groups, "all high school girls residing in Japan" and "all high school boys residing in Japan." The table below is the result.

Respondent	Desired way of being asked out	Age	Sex
1	Face to face	17	Female
\ldots	\ldots	\ldots	\ldots
148	E-mail	16	Female
149	Phone	15	Male
\ldots	\ldots	\ldots	\ldots
300	E-mail	18	Male

The cross tabulation of sex and desired way of being asked out is the table below.

		Desired way of being asked out			
		Phone	E-mail	Face to face	Sum
Sex	Female	34	61	53	148
	Male	38	40	74	152
	Sum	72	101	127	300

Estimate whether or not the hypothesis stated above is correct using a test of homogeneity. Use 0.05 as the significance level.

PROCEDURE

Step 1	Define the population.	The population in this case is "all high school girls residing in Japan" and "all high school boys residing in Japan."
Step 2	Set up a null hypothesis and an alternative hypothesis.	The null hypothesis is "the ratio of phone to e-mail to face to face is the same for high school girls and boys." The alternative hypothesis is "the ratio of phone to e-mail to face to face is different between high school girls and boys."
Step 3	Choose which hypothesis test to do.	A test of homogeneity will be applied.
Step 4	Determine the significance level.	The significance level is 0.05 .
Step 5	Calculate the test statistic from the sample data.	A test of homogeneity is being used in this exercise. Therefore, the test statistic is Pearson's chi-square test statistic. The value of $\chi_{0}{ }^{2}$ in this exercise has already been calculated on page 132. $\chi_{0}^{2}=8.0091$ Pearson's chi-square test statistic $\left(\chi_{0}{ }^{2}\right)$ in this exercise follows a chi-square distribution of degrees of freedom $(2-1) \times(3-1)=1 \times 2=2$, if the null hypothesis is true.
Step 6	Determine whether the test statistic in step 5 is in the critical region.	The test statistic $\chi_{0}{ }^{2}$ is 8.0091 . Since the significance level is 0.05 , the critical region is 5.9915 or more, according to the table of chi-square distribution on page 103. The test statistic is within the critical region.
Step 7	If the test statistic is in the critical region in step 6, reject the null hypothesis and conclude in favor of the alternative. If not, fail to reject the null hypothesis.	The test statistic was within the critical region. Thus, you conclude in favor of the alternative hypothesis, "the ratio of phone to e-mail to face to face is different between high school girls and boys."

Don't you think that both the exercise and procedure are quite similar to those for a test of independence? Let's now look at the differences between tests of independence and tests of homogeneity. There are three things to note.

First, the population defined is different. There is only one population ("all high school students residing in Japan") in the former. In the latter, there are two populations: "all high school girls residing in Japan" and "all high school boys residing in Japan."

Also, the hypotheses are different. In the former,

Null hypothesis	The Cramer's coefficient for the population is 0. In other words, sex and desired way of being asked out are not correlated.
Alternative hypothesis	The Cramer's coefficient for the population is greater than 0. In other words, sex and desired way of being asked out are correlated.

In the latter,

Null hypothesis	The ratio of phone to e-mail to face to face is the same for high school girls and boys.
Alternative hypothesis	The ratio of phone to e-mail to face to face is different between high school girls and boys.

Finally, the order of procedure is different. In the former, the hypothesis is set after the data is collected, whereas the hypothesis is set before collecting the data in the latter.

As confirmed in the previous paragraph, tests of independence and tests of homogeneity have obvious differences. However, in practice, people tend to do tests of homogeneity when they are actually intending to do tests of independence, or vice versa. Be careful.

6. HYPOTHESIS TEST CONCLUSIONS

Up to this point, we have expressed the conclusion of a hypothesis test as follows:

> IF THE TEST STATISTIC IS IN THE CRITICAL REGION, YOU CAN CONCLUDE, "I REJECT THE NULL HYPOTHESIS." IF NOT, YOU CONCLUDE, "I FAIL TO REJECT THE NULL HYPOTHESIS."

But there are other ways to express the conclusions of hypothesis tests. They are summarized below.

TABLE 7-4: EXPRESSIONS OF HYPOTHESIS TEST CONCLUSIONS

When the test statistic is in the critical region	When the test statistic is not in the critical region
- Conclude in favor of the alternative	- \quad Fail to reject the null hypothesis
\quadhypothesis	Conclude that the result is not
\quadConclude that the result is statistically significant Reject the null hypothesis	statistically significant

The expressions "it is statistically significant" and "it is not statistically significant" seem to be popular in introductions to statistics. So why did we use an unpopular expression on purpose? I recognize that many beginners to hypothesis tests use the expression "it is significant" without actually understanding the meaning of the phrase. They seem to be merely confirming the test statistic or P-value. If you do not set a proper null and alternative hypothesis, the meaning of significant will be ambiguous. Beginners' definitions of their populations are frequently unclear as well.

I used to think I shouldn't be so strict with beginners. But it's impossible to make an accurate conclusion with uncertain null and alternative hypotheses. So in this book, I use the expressions "reject the null hypothesis" and "fail to reject the null hypothesis" so that you will get into the habit of thinking hard about your hypotheses.

EXERCISE

The table below is the same as the cross tabulation found on page 138.

		Preference for coffee or tea		Sum
		Coffee	Tea	
Type of food often ordered	Japanese	43	33	76
	European	51	53	104
	Chinese	29	41	70
Sum		123	127	250

Using a chi-square test of independence, estimate if the Cramer's coefficient for type of food often ordered and preference for coffee or tea in the population "people of age 20 or older residing in Japan" is greater than 0 . This is the same as estimating whether there is a correlation between type of food often ordered and preference for coffee or tea. Use 0.01 as the significance level.

ANSWER

Step 1 Define the population.
The population in this case is "people of age 20 or older residing in Japan."

Step 2 Set up a null hypothesis and an alternative hypothesis.

The null hypothesis is "type of food often ordered and preference for coffee or tea are not correlated." The alternative hypothesis is "type of food often ordered and preference for coffee or tea are correlated."

Step 3 Choose which hypothesis test A chi-square test of independence will be applied. to do.
Step 4 Determine the significance level. The significance level is 0.01 .
Step 5 Calculate the test statistic from the sample data.

Step 6 Determine whether the test statistic obtained in step 5 is in the critical region.

Step 7 If the test statistic is in the critical region in step 6, reject the null hypothesis. If not, fail to reject the null hypothesis.

A chi-square test of independence is being used in this exercise. Therefore, the test statistic is Pearson's chisquare test statistic $\left(\chi_{0}{ }^{2}\right)$. The value of $\chi_{0}{ }^{2}$ in this exercise has already been calculated on page 141. $\chi_{0}{ }^{2}=3.3483$ The test statistic $\chi_{0}{ }^{2}$ is 3.3483 . Because the significance level (α) is 0.01 , the critical region is 9.2104 or above, according to the table of chi-square distribution on page 103. The test statistic is not within the critical region. The test statistic was not within the critical region. Thus, the null hypothesis "type of food often ordered and preference for coffee or tea are not correlated" cannot be rejected.

- A hypothesis test is an analysis technique used to estimate whether the analyst's hypothesis about the population is correct using the sample data.
- The formal name for a hypothesis test is statistical hypothesis testing.
- Test statistics are obtained from a function that calculates a single value from the sample data.
- In general, 0.05 or 0.01 is used as the significance level.
- The critical region is an area that corresponds to the significance level (also called the alpha value and expressed by the symbol α).
- A chi-square test of independence is an analysis technique used to estimate whether the Cramer's coefficient for a population is 0 . It can also be said that it is an analysis technique used to estimate whether the two variables in a cross tabulation are correlated.
- If the Cramer's coefficient for a population is 0, Pearson's chi-square test statistic follows a chi-square distribution.
- The P-value in a test of independence is a probability that gives a Pearson's chi-square test statistic equal to or greater than the value earned in the case when the null hypothesis is true.
- When making a conclusion in a hypothesis test, there are two bases of judgment:

1. Whether the test statistic is in the critical region
2. Whether the P -value is smaller than the significance level

- The process of analysis in any hypothesis test is the same as the process for the test of independence or any other kind of test. The actual procedure is:

Step 1	Define the population.
Step 2	Set up a null hypothesis and an alternative hypothesis.
Step 3	Choose which hypothesis test to do.
Step 4	Determine the significance level.
Step 5	Calculate the value of the test statistic from the sample data.
Step 6	Determine whether the test statistic obtained in step 5 is in the critical region.
Step 7	If the test statistic is in the critical region in step 6, reject the null hypothesis. If not, fail to reject the null hypothesis.
Step 6p	Determine whether the P-value corresponding to the test statistic obtained in step 5 is smaller than the significance level.
Step 7p	If the P-value is smaller than the significance level in step 6p, reject the null hypothesis. If not, fail to reject the null hypothesis.

LET'S CALCULATE USING EXCEL

This appendix contains instructions for calculating various statistics using Microsoft Excel. You'll learn how to do the following things:

1. Make a frequency table
2. Calculate arithmetic mean, median, and standard deviation
3. Make a cross tabulation
4. Calculate the standard score and the deviation score
5. Calculate the probability of the standard normal distribution
6. Calculate the point on the horizontal axis of the chi-square distribution
7. Calculate the correlation coefficient
8. Perform tests of independence

You can download these Excel files and follow along (get them at http://www.nostarch .com/mg_statistics.htm). Readers who are not familiar with Excel should try "Calculating Arithmetic Mean, Median, and Standard Deviation" on page 195 first.

1. MAKING A FREQUENCY TABLE

This exercise uses the ramen restaurant prices on page 33.

Step 1

Select cell J3.

	A	B	C	0	E	F	6	H	1	J
1		Price (yen)			Price (yen)					
2	Ramen shop 1	700		Ramen shop 26	780		Equal or greater	Less than	Equal or less	Frequency
3	Ramen shop 2	850		Ramen shop 27	590		500	600	599	
4	Ramen shop 3	600		Ramen shop 28	650		600	700	699	
5	Ramen shop 4	650		Ramen shop 29	580		700	800	799	
6	Ramen shop 5	980		Ramen shop 30	750		800	900	899	
7	Ramen shop 6	750		Ramen shop 31	800		900	1000	999	
8	Ramen shop 7	500		Ramen shop 32	550					
9	Ramen shop 8	890		Ramen shop 33	750					
10	Ramen shop 9	880		Ramen shop 34	700					
11	Ramen shop 10	700		Ramen shop 35	600					
12	Ramen shop 11	890		Ramen shop 36	800					
13	Ramen shop 12	720		Ramen shop 37	800					
14	Ramen shop 13	680		Ramen shop 38	880					
15	Ramen shop 14	650		Ramen shop 39	790					
16	Ramen shop 15	790		Ramen shop 40	790					
17	Ramen shop 16	670		Ramen shop 41	780					
18	Ramen shop 17	680		Ramen shop 42	600					
19	Ramen shop 18	900		Ramen shop 43	670					
20	Ramen shop 19	880		Ramen shop 44	680					
21	Ramen shop 20	720		Ramen shop 45	650					
22	Ramen shop 21	850		Ramen shop 46	890					
23	Ramen shop 22	700		Ramen shop 47	930					
24	Ramen shop 23	780		Ramen shop 48	650					
25	Ramen shop 24	850		Ramen shop 49	777					
26	Ramen shop 25	750		Ramen shop 50	700					

Step 2

Select Insert > Function.

Insert	Format	Tools
	Cells...	
閶	Rows	
	Columns	
	Whorksheet	
	Chart...	
	Symbol...	
	Page Break	
f_{*}	Eunction...	
	Name	
光	Comment	
	Picture	
\%	Diagram...	
	Object...	
(${ }^{3}$	Hyperlink...	Ctrl+K

Step 3

Select Statistical from the category dropdown menu, and then select FREQUENCY as the name of the function.

Step 4

Select the area shown in the figure below, and click OK.

	A	B	C	D	E	F	G	H	I	J
1		Price (yen)			Price (yen)					
2	Ramen shop 1	700		Ramen shop 26	780		Equal or greater	Less than	Equal or less	Frequency
3	Ramen shop 2	850		Ramen shop 27	590		500	600	599	26,13:117)
4	Ramen shop 3	600		Ramen shop 28	650		600	700	699	
5	Ramen shop 4	650		Ramen shop 29	580		700	800	799	
6	Ramen shop 5	980		Ramen shop 30	750		800	900	899	
7	Ramen shop 6	750		Ramen shop 31	800		900	1000	999	
8	Ramen shop 7	500		Ramen shop 32	550					
9	Ramen shop 8	890		Ramen shon 33	750					
10	Ramen shop 9	880		Function Argumen				?	x	
11	Ramen shop 10	700		FREQUENCY						
12	Ramen shop 11	890		Data_array	B2:E26		쿨 $=\{700$,	,0,"Ramen shoF		
13	Ramen shop 12	720		Bins_array			$\text { 쿠 }=\{599 ;$;699;799;899;9		
14	Ramen shop 13	680		Bins_array						
15	Ramen shop 14	650					$=\{4 ;$	3;18;12;3;0\}		
16	Ramen shop 15	790		Calculates how of of numbers having	values occur		of values and then return	ns a vertical arra		
17	Ramen shop 16	670		frumbers havin	more elent					
18	Ramen shop 17	680		Bins_array	n array of or		tervals into which you	ant to group th		
19	Ramen shop 18	900			alues in data_ar					
20	Ramen shop 19	880								
21	Ramen shop 20	720		Formula result $=$	4					
22	Ramen shop 21	850		Help on this function			OK	Cancel		
23	Ramen shop 22	700		\qquad	500					
24	Ramen shop 23	780		Ramen shop 48	650					
25	Ramen shop 24	850		Ramen shop 49	777					
26	Ramen shop 25	750		Ramen shop 50	700					
27										

Step 5

Start with cell J3, and select the area from cell J3 to J7 as shown below.

| G | H | I | J |
| ---: | ---: | ---: | ---: | ---: |
| | | | |
| Equal or greater | Less than | Equal or less | Frequency |
| 500 | 600 | 599 | 4 |
| 600 | 700 | 699 | |
| 700 | 800 | 799 | |
| 800 | 900 | 899 | |
| 900 | 1000 | 999 | |

Step 6

Click this part in the formula bar.

Step 7

Press enter while holding down the SHIFT key and CTRL key at the same time.

Step 8

Now you have the frequency of each class!

G	H	l	J
Equal or greater	Less than	Equal or less	Frequency
500	600	599	4
600	700	699	13
700	800	799	18
800	900	899	12
900	1000	999	33

2. CALCULATING ARITHMETIC MEAN, MEDIAN, AND STANDARD DEVIATION

This data comes from Rui's classmates' bowling scores on page 41.

Step 1

Select cell B10.

	A	B
1		Team A
2	Rui-Rui	86
3	Jun	73
4	Yumi	124
5	Shizuka	111
6	Touko	90
7	Kaede	38
8		
9		
10	Average	
11	Median	
	Standard	
12	Deviation	
17		

Step 2

Select Insert > Function.

Step 3

Select Statistical in the category dropdown, and then select AVERAGE.

Step 4

Type the range shown in the figure below, and click OK.

Step 5

Now you have the average score for the team.

	A	B
1		Team A
2	Rui-Rui	86
3	Jun	73
4	Yumi	124
5	Shizuka	111
6	Touko	90
7	Kaede	38
8		
9		87
10	Average	
11	Median	
	Standard	
12	Deviation	

You can calculate the median and standard deviation by following steps 1 through 5 and using the functions MEDIAN and STDEVP in step 2.

3. MAKING A CROSS TABULATION

The data for this table is Rui's classmates' responses to the new uniform design, found on page 61.

Step 1

Select cell F20, then select Insert > Function.

Step 2

Select Statistical in the category dropdown, and then select COUNTIF as the name of the function.

Step 3

Select the area shown in the figure below, type like in the Criteria text box, and then click OK.

Step 4

Now you have the total number of Rui's classmates who like the new uniform.

	A	B	C	0	E	F	G	H
1		Response			Response			Response
2	1	like		16	neither		31	neither
3	2	neither		17	like		32	neither
4	3	like		18	like		33	like
5	4	neither		19	like		34	dislike
6	5	dislike		20	like		35	like
7	6	like		21	like		36	like
8	7	like		22	like		37	like
9	8	like		23	dislike		38	like
10	9	like		24	neither		39	neither
11	10	like		25	like		40	like
12	11	like		26	like			
13	12	like		27	dislike			
14	13	neither		28	like			
15	14	like		29	like			
16	15	like		30	like			
17								
18								
19						Frequency		
20					like	28		
21					neither			
22					dislike			
23								

Step 5

You can obtain the frequency of neither and dislike by following steps 1 through 4 and typing those words instead of like in step 3.

This exercise uses the test data from page 72.
Steps 1 through 8 show the process for obtaining the standard score.
Steps 9 through 11 show the process for obtaining the deviation score. There is an Excel function for calculating standard score, but there is no function for calculating deviation score. However, the deviation score can be calculated fairly easily if we use the result of the standard score calculation.

Step 1

Select cell E2.

	A	B	C	D	E	F
1		History			$\begin{gathered} \text { Standard } \\ \text { Score } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Deviation } \\ & \text { Score } \end{aligned}$
2	Rui	73		Rui		
3	Yumi	61		Yumi		
4	A	14		A		
5	B	41		B		
6	C	49		C		
7	D	87		D		
8	E	69		E		
9	F	65		F		
10	G	36		G		
11	H	7		H		
12	।	53		I		
13	J	100		J		
14	K	57		K		
15	L	45		L		
16	M	56		M		
17	N	34		N		
18	\bigcirc	37		0		
19	P	70		P		
20	Average	53				
21	Standard Deviation	22.7				

Step 2

Select Insert > Function. Then select Statistical, and then select STANDARDIZE as the name of the function.

Step 3

Select cell B2.

Step 4

Select B20 for Mean, press F4 once, and confirm that B20 has changed to $\$ \mathrm{~B} \$ 20$.

Function Arguments		? \times
STANDARDIZE		
x B2		
Mean $\$$ B $\$ 20$		
Standard_dev		
Returns a normalized value from a distribution characterized by a mean and standard deviation.		
Mean is the arithmetic mean of the distribution.		
Formula result $=$		
Help on this function	OK	Cancel

Step 5

Select cell B21 for Standard_dev, press F4 once, and after confirming that B21 has changed to $\$ \mathrm{~B} \$ 21$, click OK.

Step 6

Confirm that Rui's standard score has been calculated.

	A	B	C	0	E	F
1		History			Standard Score	Deviation Score
2	Rui	73		Rui	0.88	
3	Yumi	61		Yumi		
4	A	14		A		
5	B	41		B		
6	C	49		C		
7	D	87		D		
8	E	69		E		
9	F	65		F		
10	G	36		G		
11	H	7		H		
12	।	53		I		
13	J	100		J		
14	K	57		K		
15	L	45		L		
16	M	56		M		
17	N	34		N		
18	0	37		0		
19	P	70		P		
20	Average	53				
21	Standard Deviation	22.7				

Step 7

Put the point of the arrow near the bottom-right side of cell E2, confirm that the arrow has changed to a black cross, drag down to cell E19 by holding down the left button of the mouse, and let go of the button when you finish dragging.

	A	B	C	D	E	F
1		History			Standard Score	Deviation Score
2	Rui	73		Rui	0.88	
3	Yumi	61		Yumi		
4	A	14		A		
5	B	41		B		
6	C	49		C		
7	D	87		D		
8	E	69		E		
9	F	65		F		
10	G	36		G		
11	H	7		H		
12	1	53		1		
13	J	100		J		
14	K	57		K		
15	L	45		L		
16	M	56		M		
17	N	34		N		
18	O	37		0		
19	P	70		P		
20	Average	53				
21	Standard Deviation	22.7				

Step 8

Now you should have everyone's standard score!

	A	B	C	D	E	F
1		History			Standard Score	Deviation Score
2	Rui	73		Rui	0.88	
3	Yumi	61		Yumi	0.35	
4	A	14		A	-1.72	
5	B	41		B	-0.53	
6	C	49		C	-0.18	
7	D	87		D	1.50	
8	E	69		E	0.70	
9	F	65		F	0.53	
10	G	36		G	-0.75	
11	H	7		H	-2.03	
12	1	53		1	0.00	
13	J	100		J	2.07	
14	K	57		K	0.18	
15	L	45		L	-0.35	
16	M	56		M	0.13	
17	N	34		N	-0.84	
18	O	37		0	-0.70	
19	P	70		P	0.75	
20	Average	53				
21	Standard Deviation	22.7				

Step 9

Select cell F2 and type $=E 2 * 10+50$, then press Enter.

	A	B	C	D	E	F
1		History			Standard Score	Deviation Score
2	Rui	73		Rui	0.88	E2*10+50
3	Yumi	61		Yumi	0.35	
4	A	14		A	-1.72	
5	B	41		B	-0.53	
6	C	49		C	-0.18	
7	D	87		D	1.50	
8	E	69		E	0.70	
9	F	65		F	0.53	
10	G	36		G	-0.75	
11	H	7		H	-2.03	
12	I	53		1	0.00	
13	J	100		J	2.07	
14	K	57		K	0.18	
15	L	45		L	-0.35	
16	M	56		M	0.13	
17	N	34		N	-0.84	
18	O	37		0	-0.70	
19	P	70		P	0.75	
20	Average	53				
21	Standard Deviation	22.7				

Step 10

Drag down to cell F19, as you did in step 7.

Step 11

Now you have the class's deviation score.

	A	B	C	D	E	F
1		History			$\begin{array}{\|c\|} \hline \text { Standard } \\ \text { Score } \end{array}$	$\begin{gathered} \text { Deviation } \\ \text { Score } \\ \hline \end{gathered}$
2	Rui	73		Rui	0.88	58.81
3	Yumi	61		Yumi	0.35	53.52
4	A	14		A	-1.72	32.82
5	B	41		B	-0.53	44.71
6	C	49		C	-0.18	48.24
7	D	87		D	1.50	64.98
8	E	69		E	0.70	57.05
9	F	65		F	0.53	55.29
10	G	36		G	-0.75	42.51
11	H	7		H	-2.03	29.74
12	I	53		1	0.00	50.00
13	J	100		J	2.07	70.70
14	K	57		K	0.18	51.76
15	L	45		L	-0.35	46.48
16	M	56		M	0.13	51.32
17	N	34		N	-0.84	41.63
18	\bigcirc	37		0	-0.70	42.95
19	P	70		P	0.75	57.49
20	Average	53				
21	Standard Deviation	22.7				

5. CALCULATING THE PROBABILITY OF THE STANDARD NORMAL DISTRIBUTION

For this example, we'll use the data from page 93.

Step 1

Select cell B2.

Step 2

Select Insert > Function, then select Statistical, and then select NORMSDIST.

Step 3

Select cell B1, and click OK.

In fact, NORMSDIST is a function to calculate the probability shown in the figure below.

Step 4

Type $=B 2-0.5$ in cell B3.

	A	B
1	z	1.96
2	halfway	0.975
3	Area(=Percentage=Ratio)	$=\mathrm{B} 2-0.5$

Step 5

Now you have the area.

	A	B
1	Z	1.96
2	halfway	0.975
3	Area(=Percentage=Ratio)	0.475

6. CALCULATING THE POINT ON THE HORIZONTAL AXIS OF THE CHI-SQUARE DISTRIBUTION

The data for this exercise comes from page 104.

Step 1

Select cell B3.

Step 2
Select Insert $\boldsymbol{>}$ Function, then select Statistical, and then select CHIINV.

Step 3

Select cells B1 and B2, and then click OK.

Step 4

Now you're done.

	A	B
1	P	0.05
2	Degrees of freedom	1
3	Chi-square	3.84146

7. CALCULATING THE CORRELATION COEFFICIENT

This data comes from the P-Girls Magazine survey found on page 116.

Step 1

Select cell B14.

	A	B	C
		Amount spent on makeup (yen)	Amount spent on clothes (yen)
1		3000	7000
2	Ms. A	5000	8000
3	Ms. B	12000	25000
4	Ms. C	2000	5000
5	Ms. D	7000	12000
6	Ms. E	15000	30000
7	Ms. F	5000	10000
8	Ms. G	6000	15000
9	Ms. H	8000	20000
10	Ms. I	10000	18000
11	Ms. J		
12			
13			
14	Correlation		
1			

Step 2

Select Insert > Function, then select Statistical, and then select CORREL.

Step 3

Select the area shown in the figure below, and then click OK.

Step 4

Now you have the correlation coefficient.

	A	B	C
		Amount spent on makeup (yen)	Amount spent on clothes (yen)
1		3000	7000
2	Ms. A	5000	8000
3	Ms. B	12000	25000
4	Ms. C	2000	5000
5	Ms. D	7000	12000
6	Ms. E	15000	30000
7	Ms. F	5000	10000
8	Ms. G	6000	15000
9	Ms. H	8000	20000
10	Ms. I	10000	18000
11	Ms. J		
12			
13		0.968019613	
14	Correlation		

NOTE Unfortunately, there are no Excel functions for calculating the correlation ratio or the Cramer's coefficient.

8. PERFORMING TESTS OF INDEPENDENCE

This data is from the dating survey on page 157.

Step 1

Select cell B8.

	A	B	C	D	E
1		Phone	E-mail	Face to face	Sum
2	Female	34	61	53	148
3	Male	38	40	74	152
4	Sum	72	101	127	300
5					
6					
7		Phone	E-mail	Face to face	
8	Female				
9	Male				
10					
11					
12	P-value				

Step 2

Type $=E 2 * B 4 / E 4$ in cell B8. Do not press enter yet.

	A	B	C	0	E
1		Phone	E-mail	Face to face	Sum
2	Female	34	61	53	148
3	Male	38	40	74	152
4	Sum	72	101	127	300
5					
6					
7		Phone	E-mail	Face to face	
8	Female	=E2*B4/E4			
9	Male				
10					
11					
12	P-value				

Step 3

Select E2 in the equation you just typed, press F4 three times, and confirm that E2 has changed to \$E2. Do not press ENTER yet.

	A	B	C	0	E
1		Phone	E-mail	Face to face	Sum
2	Female	34	61	53	148
3	Male	38	40	74	152
4	Sum	72	101	127	300
5					
6					
7		Phone	E-mail	Face to face	
8	Female				
9	Male				
10					
11					
12	P-value				

Step 4

Select $B 4$ in the equation in cell $B 8$, press $F 4$ twice, and confirm that $B 4$ has changed to $B \$ 4$. Select $E 4$ in the equation in cell B8, press F4 once, and confirm that $E 4$ has changed to $\$ E \$ 4$. Then press ENTER.

	A	8	C	0	E
1		Phone	E-mail	Face to face	Sum
2	Female	34	61	53	148
3	Male	38	40	74	152
4	Sum	72	101	127	300
5					
6					
7		Phone	E-mail	Face to face	
8	Female	=\$E2*B\$4	\$E\$4		
9	Male				
10					
11					
12	P-value				

Step 5

Select cell B8, put the point of the arrow near the bottom right side of cell B8, confirm that the arrow has changed to a black cross, drag down to cell D8 by holding down the left button of the mouse, and let go of the button when you finish dragging.

	A	B	C	0	E
1		Phone	E-mail	Face to face	Sum
2	Female	34	61	53	148
3	Male	38	40	74	152
4	Sum	72	101	127	300
5					
6					
7		Phone	E-mail	Face to face	
8	Female	35.52			
9	Male				
10					
11					
12	P-value				

Step 6

Select the area from cell B8 to D8, put the point of the arrow near the bottom right side of cell D8, confirm that the arrow has changed to a black cross, drag down to cell D9 by holding down the left button of the mouse, and let go of the button when you finish dragging.

	A	B	C	D	E
1		Phone	E-mail	Face to face	Sum
2	Female	34	61	53	148
3	Male	38	40	74	152
4	Sum	72	101	127	300
5					
6					
7		Phone	E-mail	Face to face	
8	Female	35.52	49.82667	62.6533333	
9	Male				
10					
11					
12	P-value				

Step 7

Select cell B12, select Insert > Function, then select Statistical, and then select CHITEST.

Step 8

Select the area shown in the figure below, and then click OK.

Step 9

Now you're done. You can confirm that the calculated value is equal to the P -value on page 177.

	A	B	C	D	E
1		Phone	E-mail	Face to face	Sum
2	Female	34	61	53	148
3	Male	38	40	74	152
4	Sum	72	101		127
5					300
6					
7		Phone	E-mail	Face to face	
8	Female	35.52	49.82667	62.65333333	
9	Male	36.48	51.17333	64.34666667	
10					
11					
12	P-value	0.018233			

A

actual measurement frequencies, 130,131
alpha value (α), 159,163
alternative hypothesis
accuracy of, 166
considerations, 174
Cramer's coefficient, 186
examples of, 161, 171-173
overview, 170-174
P-value and, 175-179
test of difference between population ratios, 173
arithmetic mean, 43, 73, 74
average (mean). See mean
AVERAGE function, 196
average savings, 46-47

c

calculations. See Excel calculations
categorical data, 14-29
correlation ratio, 121
creating tables, 60-64
cylinder charts, 114
defined, 19
examples of, 20, 23-26
indexes, 117
overview, 14-19
as result of survey, 60-64
scatter charts, 114
charts
converting to graphs, 33-39
correlation ratio, 126
cylinder, 114
degree of relation and, 115
expenditure, 116-120
scatter. See scatter charts
CHIDIST function, 107
CHIINV function, 107, 205-206
chi-square distribution, 99-105
calculating, 130-133
degrees of freedom, 99-108
described, 99
examples of, 99-105, 152
points on horizontal axis, 205-206
chi-square symbol, 103
chi-square test of independence, 151-169

CHITEST function, 210-211
class midpoint, 36-39, 54, 56
classes
calculating with Sturges' Rule, 55, 56, 58
intraclass variance, 117, 123, 124, 126
range of, 39, 54-57, 84
coefficient
correlation, 116-120, 206-207
Cramer's. See Cramer's coefficient
CORREL function, 207
correlation, 115, 119
correlation coefficient, 116-120, 206-207
correlation ratio, 117, 121-127, 207
COUNTIF function, 197-198
Cramer's coefficient, 127-138
accuracy of, 147
alternative hypothesis, 186
calculating, 130-135, 141
examples of, 127-136
Excel and, 207
indexes, 117, 129
informal standard, 136
making informed decision about, 147-148
null hypothesis, 168, 186
ratio of preference, 155
variances in population, 145-150, 157, 186
Cramer's V. See Cramer's coefficient
critical region, 159, 165-167, 187
cross tabulation, 62-64, 128, 130, $135,151,153,197-198$
curve, grading on. See standard scores
cylinder charts, 114

D

data
categorical. See categorical data
collection of, 186
immeasurable. See categorical data
numerical. See numerical data
"scattering of," 49, 58, 69, 70, 80
unsuitable for correlation coefficient, 120
data point, 80
data types, 13-29, 117
degree of relation, 115, 116-120
degrees of freedom (df), 99-108
descriptive statistics, 57-58
deviation, standard, 48-53, 70-79
deviation scores, 74-80, 199-203
df (degrees of freedom), 99-108
distributions
chi-square. See chi-square distribution
Excel and, 107-109
F, 106-107
normal, 86-91
standard normal, 89-98, 204-205
t, 106

E

estimation theory, 57-58
Euler's number, 86
Excel calculations, 191-211
chi-square distribution, 205-206
correlation coefficient, 206-207
cross tabulation, 197-198
deviation scores, 74-80, 199-203
distributions and, 107-109
frequency tables, 192-195
mean, 195-196
median, 195-196
standard deviation, 195-196
standard normal distribution, 204-205
standard scores, 199-202
tests of independence, 208-211
Excel files, downloading, 192
Excel functions
AVERAGE, 196
CHIDIST, 107
CHIINV, 107, 205-206
CHITEST, 210-211
CORREL, 207
COUNTIF, 197-198
FDIST, 107
FINV, 107
FREQUENCY, 193-194
NORMDIST, 107
NORMINV, 107
NORMSDIST, 107, 204
NORMSINV, 107

Excel functions, continued
STANDARDIZE, 199-201
TDIST, 107
expected frequencies, 130, 131
expenditure chart, 116-120

F

F distribution, 106-107
FDIST function, 107
FINV function, 107
freedom, degrees of, 99-108
frequency
actual, 130, 131
described, 36
distribution tables, 32-39
expected, 130, 131
relative, 36-37, 39
FREQUENCY function, 193-194
frequency tables
creating with Excel, 192-195
range of class of, 54-56

G

geometric mean, 43
grading on a curve. See standard scores
graphs
converting price charts to, 33-39
converting surveys to, 62-64
shape of, 100-101
slope of, 101

H

harmonic mean, 43
histograms
advantages of, 83
examples of, 39, 83, 84, 154
overview of, 38-39
probability density function, 83-84
range of class and, 84,85
variables, 39
homogeneity, test of, 184-186
horizontal axis, 39, 102, 107, 109, 125
calculating points on, 107
hypothesis tests, 143-189. See also tests of independence
alternative hypothesis. See alternative hypothesis
chi-square test of independence, 151-169
conclusions, 187
defined, 149
examples of, 149, 168-174
null hypothesis. See null hypothesis
overview of, 144-150
population considerations, 149, 186
procedure for, 150, 175-179
P-value, 163, 175-179, 189
tests of correlation, 149, 171
tests of correlation ratio, 149, 171
tests of difference between population means, 149, 171, 173
tests of difference between population ratios, 149, 171, 173
tests of homogeneity, 184-186
tests of independence, 149, 171
types of, 149, 171

I

immeasurable data. See categorical data
independent coefficient. See Cramer's coefficient
indexes
correlation coefficient, 120
Cramer's coefficient, 117, 129
numerical data, 117
intraclass variance, 117, 123, 124, 126

L

linear relationships, 120

M

mean (average)
arithmetic, 43, 73, 74
calculating with Excel, 195-196
defined, 43
examples, 40-44
geometric, 43
harmonic, 43
normal distribution and, 87-89
standard normal distribution and, 89-90
median
calculating with Excel, 195-196
defined, 45
examples of, 45-47
uses for, 44
Microsoft Excel. See Excel calculations, Excel files, and Excel functions
midpoint, class, 36-39, 54, 56
multiple-choice answers, 28

N

Napier's constant, 86
negative correlation, 119
non-linear relationships, 120
normal distribution, 86-91
normalization, 71-72
NORMDIST function, 107
NORMINV function, 107
NORMSDIST function, 107, 204
NORMSINV function, 107
null hypothesis
considerations, 174
Cramer's coefficient, 168, 186
difficulty of proving, 174
examples of, 167-174
failing to reject, 150, 167, 178,
179, 187
overview, 170-174
P-value and, 175-179
rejecting, 158, 159, 178
for tests of correlation, 172
for tests of correlation ratio, 172
for tests of difference between population ratios, 173
for tests of independence, 172
numerical data, 14-29
correlation ratio, 121
defined, 19
descriptive statistics, 57-58
estimation theory, 57-58
examples of, 21-23, 26
frequency tables, 32-39, 54-56, 58
histograms, 38-39, 54, 58
indexes, 117
mean (average), 40-43
median, 44-47
overview, 31-58
scatter charts, 114
standard deviation, 48-53, 70-79

P

Pearson's chi-square test statistic, 132, 152-155, 158
percentage, 5, 37, 62, 64
population
Cramer's coefficient, 145-150, 157, 186
defined, 6
hypothesis tests and, 149, 186
vs. sample, 52
standard deviation, 52
status of, 4, 7, 57
variances in, 145-150, 157, 186
population ratios, 149, 171, 173
positive correlation, 119
price charts, 33-39
probability, 81-109
associated, 104
chi-square distribution, 99-105, 205-206
defined, 82
degrees of freedom (df), 99-108
distributions and Excel, 107-109
F distribution, 106-107
normal distribution, 86-89
standard normal distribution, 89-98, 204-205
t distribution, 106
test results, 83-84
probability density function, 82-85, 99 , 107, 109
P -value
alternative hypothesis and, 175-179
hypothesis tests, 163, 175-179, 189
null hypothesis and, 175-179
tests of independence, 175

Q

qualitative data. See categorical data quantitative data. See numerical data questionnaires, 15-19

R

range, class, 39, 54-57, 84
relationships
correlation ratio, 117, 121-127
degree of, 115, 116-120
linear, 120
non-linear, 120
variables, 112-115
relative frequency, 36-37, 39

s

samples, 6, 7, 52, 57
scatter charts
correlation ratio, 122, 126
examples of, 114, 116
monthly expenditures, 116-120
scattering, of data, 49, 58, 69, 70, 80 scores
deviation, 74-80
evaluating, 71
standard, 65-80, 73, 199-202
significance level (α), 159, 163
slope, graph, 101
standard deviation
calculating with Excel, 195-196
normal distribution and, 87-91
numerical data, 48-53, 70-79
population, 52
standard normal distribution and, 89-90
standard normal distribution, 89-98, 204-205
standard scores, 65-80, 73, 199-202
standardization, 71-72, 80
STANDARDIZE function, 199-201
statistical hypothesis testing. See hypothesis tests
statistical significance, 187
statistics
defined, 4
descriptive, 57-58
estimation theory, 4-7
STEP test, 23-25
Sturges' Rule, 55, 56, 58
surveys, 4-7
categorical data, 60-64
converting to graphs, 62-64
limitations of, 4-7
tests of independence, 137, 208-211

T

t distribution, 106
tables
categorical data, 60-64
chi-square distribution, 102-105, 205-206
cross tabulation, 128, 130, 135, 151, 153
frequency. See frequency tables
normal distribution and, 107
standard normal distribution, 92-93, 104, 108
TDIST function, 107
test results
normal distribution, 86-89
probability density function, 83-84
standard normal distribution, 89-98
tests of correlation, 149, 171, 172
tests of correlation ratio, 149 , 171, 172
tests of difference between population means, 149, 171, 173
tests of difference between population ratios, 149, 171, 173
tests of homogeneity, 184-186
tests of independence, 208-211. See also hypothesis tests
chi-square, 151-169
examples of, 149, 171, 184-186
P-value, 175
vs. tests of homogeneity, 186
uses for, 137, 149
TINV function, 107

V

values
median, 44-47
P-value, 163, 175-179, 189
variables, 111-142
correlation coefficient, 116-120
correlation ratio, 121-127
Cramer's coefficient, 127-138,
141, 142
degree of relation, 115, 116-120
histograms, 39
relationships, 112-115
vertical axis, 39

W

weather forecasts, 82

Z

zero correlation, 119
z-score. See standard scores

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

ABOUT THE AUTHOR

Shin Takahashi graduated from the Graduate School of Design of Kyushu University. Takahashi has worked as a lecturer and a data analyst and is currently active as a technical writer. He also wrote Factor Analysis and Regression Analysis in the Manga Guide series.

PRODUCTION TEAM FOR THE JAPANESE EDITION

Production: TREND-PRO Co., Ltd.
Founded in 1988, TREND-PRO produces newspaper and magazine advertisements incorporating manga for a wide range of clients from government agencies to major corporations and associations. Recently, TREND-PRO participated in advertisement and publishing projects using digital content. Some examples of past creations are publicly available at the company's website, http://www.ad-manga.com/.

Ikeden Bldg., 3F, 2-12-5 Shinbashi, Minato-ku, Tokyo, Japan
Telephone: 03-3519-6769; Fax: 03-3519-6110

Scenario Writer: re_akino
Artist: Iroha Inoue

MORE MANGA GUIDES

The Manga Guide series is a co-publication of No Starch Press and Ohmsha, Ltd. of Tokyo, Japan, one of Japan's oldest and most respected scientific and technical book publishers. Each title in the best-selling Manga Guide series is the product of the combined work of a manga illustrator, scenario writer, and expert scientist or mathematician. Once each title is translated into English, we rewrite and edit the translation as necessary and have an expert review each volume for technical accuracy. The result is the English version you hold in your hands.

Find more Manga Guides at your favorite bookstore, and learn more about the series at http://www.edumanga.me/.

UPDATES

Visit http://www.nostarch.com/mg_statistics.htm for updates and errata, and to download the Excel files from the appendix.

The Manga Guide to Statistics is set in CCMeanwhile and Chevin. The book was printed and bound at Malloy Incorporated in Ann Arbor, Michigan. The paper is Glatfelter Spring Forge 60\# Smooth Eggshell, which is certified by the Sustainable Forestry Initiative (SFI).

STATISTICS WITH HEART-POUNDING EXCITEMENT!

IF YOU'RE FEELING ANXIOUS ABOUT STATISTICS, OR YOU JUST NEED TO GET A HANDLE ON YOUR DATA, THE MANGA GUIDE TO STATISTICS WILL HELP YOU CONQUER THAT "I'M NO GOOD AT MATH" FEELING. THIS CARTOON GUIDE WILL HAVE YOU ON YOUR WAY TO STATISTICAL LITERACY IN NO TIME. AND BECAUSE NO MATHEMATICS BOOK IS COMPLETE WITHOUT THEM, IT HAS EXERCISES (AND ANSWERS), TOO, SO YOU CAN PRACTICE WHAT YOU LEARN.

FOLLOW ALONG AS THE EVER-PATIENT MR. YAMAMOTO TEACHES RUI HOW TO:
all CALCULATE THE MEAN, MEDIAN, AND STANDARD DEVIATION OF BOWLING SCORES
\cdots GRAPH RAMEN NOODLE PRICES ON A HISTOGRAM
al DETERMINE THE PROBABILITY OF GETTING AN A ON A MATH TEST
al CALCULATE THE CRAMER'S COEFFICIENT TO DETERMINE HOW BOYS AND GIRLS PREFER TO BE ASKED OUT
a LEARN HOW STANDARD SCORE IS USED TO ADJUST TEST RESULTS WHEN TEACHERS "GRADE ON A CURVE"

THESE AND OTHER QUIRKY, REAL-WORLD EXAMPLES MAKE IT EASY FOR YOU TO LEARN WHAT MANY PEOPLE FIND DIFFICULT TO MASTER.

IF YOU WANT TO LEARN STATISTICS BUT YOU FEEL LIKE YOUR HEAD IS GOING TO EXPLODE, OR IF YOU JUST NEED A GREAT REFRESHER, LET MR. YAMAMOTO AND RUI BE YOUR GUIDES.

the finest in get entertainment ${ }^{\text {m }}$ www.nostarch.com

[^0]: *The probability density function for normal distribution is affected by the mean and standard deviation. Thus, it is impossible to make a "table of normal distribution," and no such thing exists in this world. However, by using Excel, you can conveniently calculate the values and make a table relevant to the normal distribution.

[^1]: correlation ratio is $0 \Leftrightarrow$ average for each group is the same \Leftrightarrow intraclass variance is 0

